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ABSTRACT

This work treats the problem of scattering of electro-
magnetic waves from random electron density fluctuations in
a cold magneto-plasma. The problem is formulated in terms
of characteristic waves., First a Green's function is devel-
oped as a superposition of charzcteristic waves. This Green's
function is asymptotic for large distances and thus the
solutions are for far fields only. This Green's function is
then used to solve two kinds of problems using the Born or
single scatter approximation. The first problem considered
is the bistatic scattering problem. Here a transmitter
beams power at a region in space which contains random
fluctuations in electron density. An expression is obtained
for the power scattered in a given direction from the volume.
The results are then discussed. The second problem is the
radio star problem. In this problem a radio wave propagates
through an infinite slab and is received below the slab.
Expressions for the correlations of the in phase and quadri-
ture phase components of the electric field along the un-
scattered ray path (longitudinal correlation) are obtained.
These expressions are then discussed.

There are two general conclusions that can be made from
this work. The first is that the solution can depend very

strongly on the relationship among the incident ray vector,
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the scattered ray vector and the D.C. magnetic field vector.
The degree of variation increases as the medium becomes more
anisotropic. The second conclusion is that mode conversion
is caused by those fluctuations whose correlation length is
of the order of the wavelength. If the correlation length
is much larger than the wavelength mode conversion is negli-

gible.
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CHAPTER I

INTRODUCTION

1.1 Description of the Problem

The problem of the scattering of electromagnetic fields
in a random medium when the background medium is isotropic
has been discussed extensively in the literature, but not
much work has been done when the background medium is aniso-
tropic. The purpose of the work presented here is to extend
the work in the area of anisotropic background media.

The anisotropic random medium .to be considered here is
a magneto-plasma with random fluctuations in the number
density of electrons. The frequencies considered are high
enough so that the effect of ions can be ignored and there-
fore as far as the electromagnetic field is concerned only
electrons need be considered important. For this plasma two
things are of interest. Since the background medium is
anisotropic its properties depend upon direction and therefore
one area of interest is the variation of the solution with
respect to variations in the geometry of the problem, in~
cluding the D.C. magnetic field vector. The second area of
interest.is the depolarization of the .signal, that is, the
generation of electromagnetic waves with a different polari-
zation than the incident wave.

Two different types of geometries are usually investiga-

ted in problems of this type. The first is the bistatic



geometry. In this problem energy originates at a transmitter
and propagates into a region containing random fluctuations
which scatter some of the energy. This scattered energy is
then detected by a receiver. The volume from which the
energy is scattered is assumed to be small, .Either the
scattering volume itself is small or the beams of the trans-
mitting and receiving antennas are narrow so that their
common volume is small. This type of geometry occurs in the
study(of laboratory plasmas using microwave beams and in the
study of the ionosphere by ionospheric sounders, partial
reflection techniques and oblique sounding techniques.

The second type of geometry is the so-called radio star
problem. In this problem the beams of the transmitter and
receiver are pointed at each other. Between them is a slab
which contains random fluctuations. There is no attempt to
restrict the size of the scattering region transverse to the
path joining the transmitter and receiver as there was in
the previous case. This type of geometry occurs in the
reception of signals from radio stars and earth satellites

as well as certain laboratory experiments.

1.2 HistorX

The early work in this area was done by Bergman (1946)
and Pekeris (1947). Booker and Gordon (1950) used the
method of Perkeris to solve the bistatic problem for an

isotropic medium with isotropic irregularities. This work



was then generalized to non-isotropic irregularities by
Booker (1956). The results of this work shows that the
scattering cross section is given by

<Ae?> m?sin®y

g = o2 e 1;>[k(:t“2 -rl)]

where ¥ is the angle between the direction of scattering r,

N

and the direction of the incident electric field Eb’ r1 is
the direction of the transmitter and p is the spectrum of Ae.
The book by Tatarski (1961) presents a very detailed discus-
sion of this problem and is therefore a very good reference.
Cohen (1962) considered the problem of scattering in a warm
isotropic plasma. In addition to the scattering cross
sections of the electromagnetic wave and plasma wave he.
developed conversion cross sections between them.

The early work on the radio star problem can be found
in the review paper of Ratcliffe (1956). The extensive
bibliography in this paper provides a good survey of the
early literature. The background medium was isotropic and
the problem was formulated in. terms of diffracting screens
or phase and amplitude modulating screens. Bowhill (1961)
used this same technique to consider strong fluctuations.
Budden (1965) considered the problem of correlation of
amplitude fluctuations expressing the result in terms of the
spectral intensity function. Tatarski (1961l) also used this

type of approach. The book by Chernov (1960) presents a

comprehensive treatment of the correlations of the log



amplitude and phase departure for isotropic irregularities.
Yeh (1962) considered the problem of scattering in an iso-
tropic medium with non-isotropic fluctuations. The method
of solution used here corresponds to the treatment in these
last two works. Yeh and Liu (1967) considered the problem
with an anisotropic background medium but took .it only to
the first order in Y and therefore considered only high
frequencies. Their interest was in the Faraday effect.

The method used to obtain the asymptotic Green's
function was first presented by Lighthill (1960). It has
been used by other authors such as Felson (1965) and
Deschamps (1964). Kesler (1965) presents .a very comprehen-
sive development of the use of characteristic wave expansions

as well as the asymptotic solution used here.

1.3 Description of the Text

Chapter two is devoted to the determination of the Green's
function and a discussion of the pertinent factors in it.
First the equation for the scattered field is developed. Next
the characteristic waves are normalized and an expression for
the Green's function as a superposition of characteristic
waves is obtained. An asymptotic evaluation of this Green's
function is then obtained. Finally the characteristic waves
and the Gaussian curvature are discussed.

Chapter three is devoted to the bistatic scattering

problem. First an expression for the scattered power is



obtained and then the scattering cross section .is developed.
The solution divides nicely into a part which depends upon
the properties of the medium and the geometry .of .the problem
and a part which in addition depends upon the statistics of
the fluctuations. These two factors are discussed in sepa-
rate sections. The approximations that were made in develop-
ing the solution are discussed next. Finally two applications
of the theory are presented.

Chapter four is devoted to the radio star problem. First
expressions for the longitudinal correlations of the in phase
and quadriture phase components of the scattered field are
obtained. The fluctuations are assumed to be isotropically
correlated. The resulting equations are then discussed.
Finally the approximations used in the solution are discussed.

Chapter five is the concluding chapter. The important
points developed are emphasized and the limitations of the
work are discussed. Some comments on future work are also

presented.



CHAPTER II
THE GREEN'S DYADIC T (r|?¥ ') &S 2

SUPERPOSITION OF CHARACTERISTIC WAVES

2.1 Introduction

This chapter is devoted to the derivation of the
differential equation for the scattered field in an aniso-
tropic medium and the asymptotic solution for the Green's
function which will be used to solve for the two general
classes of problems considered in Chapters III and IV. Some
characteristics of cold magneto-plasmas are also presented

insofar as they are involved in the’ Green's function.

2.2 The Scattered Field

The general scattering problem consists of an incident
wave propagating in the medium which enédunters a region
of space in which there are random fluctuations in number
density of the electrons and thus random fluctuations in
the relative dielectric tensor K. The object is to find an
expression for the scattered field. In the work presented
here the single scatter or Born approximation will be used.

In the scattering region V the incident electric field

Ei and the scattered electric field Eé°satisfy the equation
UxVx [E; (D)+E_ ()] - keK(E)« [F; @+E,(H)1 =0 2.2.1

2
where kg is the free space wave number, ko = w/C. Let the

relative dielectric tensor K(r) be given by
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R(r) =T - XM - AX(T)M

where I is the unit tensor,

_y? - , v ¥ -3y ]
L 1 Yx Yny+jYZ YXYZ jYy
M = =Y Y. -] 1-y2 -Y_Y_+] 2,2.2
1-y2 ny 1Y, y v PARRSY
_ : _ — w2
I Y Y, 43V Y Y,=3Y, 1-y2 ]
v = %5 %o for electrons, §0 is the D. C. magnetic field,
2
w is the angular operating frequency, X = g%;, N is the

number density and AX(?) is the random fluctuation in X.
Using this form for K, equation 2.2.1 becomes
2 = === . =
VxVx (B, (£)+E_ (T)] - ko [T-XM-AX (F)M] - (B, (F)+E_(£)] = 0

2.2,3
Now if AX = 0, there is no scattered field and Ei satisfies

the equation
VxVxE, () - ko (T-xM)-B5 (F) = 0
Thus equation 2.2.3 becomes
veVxE_(F) - ko (T-XW) B (F) = -kﬁAX(%)ﬁ-[Ei(§)+ES(§)] 2.2.4

This is an equation for the scattered field Es with tpe
random fluctuations as the source function. Unfortunately
this source function depends upon the scatterea‘fieid, and
therefore some approximation is desirable. In the Born
approximation the scattered field i1s assumed to be so small

that the electric field at the scatterer is essentially



the incident field Ei (E'J._>'>Es)° This approximation ignores
the contribution of the scattered field to the source
term and 1s therefore referred to as the single scatter

approximation. Therefore equation2.2.4 becomes
2 = ——1 -
VxVRE_ (F) - ko (T-x) -E_(F) = -koAX (D) F-E, 2.2.5

This is the differential equation for the scattered field
which is used in this paper. The solution of this equation
can be formally written as
2 3 =
B (F) = -ko J AX(xOT(£]T") M-8, (Par! 2.2.6
v .
where V is the scattering volume and ?(?];')fis~the Green's
dyadic for the operator foerkg(T%Xﬁ)-J;i’Tn'the following
P ’ l

sections an asymptotic solution fb# I' in terms of.

characteristic waves will be found.

2.3 Normalization of the Characteristic Waves

Consider a cold magneto-plasma described by the-
relative dielectric tensor ? =T - xﬁ. jhe soluﬁion of the.
eigen-value éroblem'for‘electroﬁagn;tic %aves in:tﬁis
medium yields two characteristic waves o% normal; modes
(Ratcliffe, 1959, Chapter 2), whicﬁ are électromégnetic
in nature. A characteristic wave is a wave'which'dbeﬁ no£
change its state of polarization as it propagates in a qiven
direction. 1In general the properties of a charatteristic

wave will be a function of the direction of propagation.



Consider the wave equation
VkVxE (F) - koK B(T) = 0 2.3.1

The Fourier transform of this equation is

(k2T-kk-koR) "B (¥) = 0 2.3.2
> o 24 s ji.; -
where E(k) = f E(r) e dr. As was stated above there

[}

are two characteristic waves which satisfy this equation.

They are given by

2=_"> > _ 2== “‘)‘ —

(ka kmkm koK) a, = 0 2.3.3a
2T_F P _ 2= T

(an knkn koK) a, = 0 2.3.3b

where Km is the wave vector of the characteristic wave
m and gm is the polarization vector, similarly faqr in
N .
and a .
Now multiply equation 2.3.3a by 3; from the left

and equation 2.3.3b by 3; from the left to obtain

>k I 2 R

a_ (ka km%m koK) a 0 2.3.4a
a* o (k2T-E. K -k{K):32_ = 0 - 2.3.4b
m n nn n

If the medium described by K is lossless, K is hermitian
(" = K) (Landau and Lifshitz, 1960, Section 82). If K
is hermitian, the wave vectors im and En are real in the

propagating region (Hoffman and Kunze, 1961, Section 8.6).
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Taking the hermitian conjugate of equation 2.3.4b and using
" the above properties of K and Em a nhew equation 2.3.4b' can

be derived
. 2T T T 2Ty . T = _
a (k I-k _k -koK) a 0 2.3.4b'

Subtract equation 2.3.4b' from equation 2.3.4a to obtain

-> % . 2_ 2 =_ > o> _‘+ > . - -
a, [(km kn)I (kmkm nkn)] a 0 2.3.5

Since the characteristic waves. are defined for a given
2 » N -~ +_-) - +-—+ A.
direction of propagation, let km = km P and kn = kn P,

where p is a unit vector in the direction of propagation.

With this substitution equation 2.3.5 becomes

(klfl—k;)zt; - (I-pp) -Sm =0 2.3.6

There are two possible solutions fo equation 2.3.6
which give the orthogonality;condition and the normaliza-
tion for the polarization wvector a. If M # n, then in

general the first factor is non-zero, so

> = ~" >
ag - (I-pp) a, = 0 2.3.7

which is part of the orthogonality relation. If m = n the
first factor is zero so the second factor can be chosen

arbitrarily. Normalize the polarization vector so that

% = ™" -+ _
a, - (I-pp) a, = 1 2.3.8
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The meaning of this normalization relation can be
examined simply in a special coordinate system in which

p = 2. Then

1 0 0
IT-pp= |0 1 0
0 0 0

Using this in equation 2.3.8 shows that the characteristic
waves are normalized such that the magnitude of the
polarization vector transverse to the propagation vector
"is equal to unity.

'Equations 2.3.7 and 2.3.8 can be condensed and re-

stated as the orthonormal condition,

> % = " »—> -
a_ - (I-pp) - a = smn 2.3.9

where amn is the Kronecker delta. Another relationship
can be obtained from equation 2.3.4b' using equation 2.3.9.

It is the orthogonality relation

¥ L kiR - 3 = k2 8 2.3.10
n m n mn

Equations 2.3.9 and 2.3.10 give the orthonormal
relationships for the polarization vector & which are
needed to determine a solution for the Green's function T

as a superposition of characteristic waves.



2.4 The Green's Dyadic T

The Green's dyadic T (
solving the equation for the scattered electric field as
“a superposition of characteristic waves. The resulting
equation will be compared to the formal solution’for’ﬁs
"by the method of Green's functions resulting in the identi-
- fication of the Green's dyadic.

In the infinite medium described by the relative
dielectric tensor K = I - XM, the electric field must

satisfy the equation
vxVx B(¥) - keR - B(F) = F (D) 2.4.1

where 3(?) is some given current density. Take the

Fourier transform of this equation
(k2T - Kk - koK) . E(kK) = J(k) 2.4.2

where k is the transform variable defined%in'section 2.3,
Since the characteristic waves form a basis for the
solutions to the above equation (Collin, 1960; appendix

A.3), the solution for E(K) can be expressed as

A a 2.4.3

E(i) = m m

z
m
>
a

where Am is an amplitude and - is a normalized characteristic

"

polarizatioh corresponding te the direction k. "Using this

expansion equation 2.4.2 can be written as
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2= _ e a 2= -> e
z Am(k I kk koK) A, = J (k) -2.4.4
m

Take the scalar product of equation 2.4.4 with ;;s

TR 2T _ TE 2= °+ _ . 2T
i Am a (k41 kk koK) a, a_ J (k)
Let the vector k be in the propagation direction for the
characteristic wave defined by g, the orthogonality relations
"given by equations 2.3.9 and 2.3.10 can be used to

determine the amplitude A of characteristic wave m as

E :
A = —L— . 3 (k) 2.4.5
. NPT
m
Thus from equation 2.4.3, the electric field is
S, >
> > a tdk)
E(k) = - — 3 2.4.6
m k2-x2 o

> k.
- > 1 am am &> > ,—ji.; -
E(r) = : —_— . J(k) e = dk 2,4.7
(2m) @ m k?-k?
- e - ‘im%‘ -
Substituting J(k) = [ J(r')ed ™ F gr! intd this eguation

2.4.7 and rearranging terms, this equation becomes finally,

> > 1 g g* “E (+—+') > > > ->
E(r) = f[ - ) f—%——% e IFTNETEN) gky . F(rr)dr' 2.4.8
¥o(2m)° m k -km

where the volume V is the support of 3(;).
The solution to equation 2.4.1 by the method of Green's

functions can be formally written as
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E(@® =/ T |z - FEHar 2.4.9
v
By comparing equations 2.4.8 and 2.4.9 the Green's dyadic

can be identified as

> %
T(x|t") = ) j m Pm 3R EED g 5410
(2m)3 m kz—k;

While this equation gives a formal expression for the
Green's dyadic, the integrations involved in obtaining an
analytic expression for T are very difficult if not
impossible. For the cases to be considered here no exact
solution to equation 2.4.10 has ever been found. 1In the
next section an approximation to equation 2,4.10 for large

distances from the source region will be obtained.

2.5 Asymptotic Evaluation of the Green's Dyadic

The method used for the asymptotic evaluation of
equation 2.4.10 was first presented by Lighthill (l§60).
The method has been used by‘others in the field of wave
propagation; for example Felson (1964) and Deschamps (1964).
It gives an asymptotic solution for large R which is
O(E%-)° Since the type  of problems to which' the results
are to be applied usually desire the solution a large
distance from the scattering region,this restriction is
not too great.

The general class of problem for which a solution is

sought is



ak 2.5.1

=00 ¥, m
where ﬁ and Em are in the same direction (§'= k 'k and-

k= ko k). The solution is then given as the result of

m
“two' different methods of integration. The first is the
‘use of contour integration and the theory of residues to
reduce the integral to a two fold integral. If X(ﬁm) is
regular, the pole of the integrand occurs at k = km. This
first integration then shows that the transform variable
kX must be identical to the wave normal Em.' The remaining
two integrals are then solved by an asymptotic technique.
The method chosen to solve these remaining ihtegrals i? the
method of stationary phase. |
The method of stationary phase makes use of the fact
that a large constant' R appears in- a phase term along‘Qith

variables of integration. This will cause the factor
= .

e_jEm'R to oscillate very rapidly except near those points
“where Em‘is stationary. ' If the rest of the integrand is
slowly wvarying compared to this factor, these rapid
oscillating sections will give almost zero contribution to
the integral. Thus the main contribution to the value of
the integral will come from the regions around the
stationary points of'ﬁm@‘ The stationary points are those
points for which the exponent has zero first derivative

with respect to the variables of integration. This

condition implies that the normal to the surface defined
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by‘im“iS'in the direction of the ray wvector R.' The
details of this work can be found  in Lighthill (1960),
“only the results will be quoted.
The solution to equation 2.5.1 is given by equation
74  of Lighthill's (1960) paper. It is
2 - = N
n(® 4; s |v i:j_:z(]:TS)/'lc ]‘e—j a® 2.5
k m’'s ms

where m refers to a characteristic mode and s refers to

il

a stationary point for that mode. The summation over s
takes into account the possibility of more than'one innt»
satisfying the condition of stationary phase, which are
those points of the surface k = km for which the normal

is parallel to R. de-iS a constant that is (a) + j if

C.s < 0 and Vk(kz-ké)ls is- in the direction + R, (b) + 1 if

C > 0 and the surface’ is convex to + Vk(kz—k;)]s, C

ms ms

is the Gaussian curvature of the surface evaluated at the
stationary point.

Equation 2,5.2 is wvalid if Crs # 0, If this is not
the case, solutions are still possible for some cases, see
Lighthill (1960, section 5). -~ For the type of surfaces
considered here most cases of vanishing Gaussian curvature
lead tp solutions in terms of the Airy integral. The
interesting feature of this is that when C = 0 the fields

_5/
decay like R /%

— o
instead of R . This means that regions
of vanishing Gaussian curvature have fields associated

with them which are decaying slower with distance.
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Consider now the factor le(kz—ké)]s. The derivative

of (kz—k;) in the direction k is

d
2_1.2 -
a; (k km)ls 2K s

since Em and k have only their direction in common
originally. But

d 2 2
— (k?-k2)

v, (k2-k2) - ﬁ
dk k m

2_1.2
,|Vk(k km)] cos o

‘where o is the angle between Vk(kz—k;) and k. The
stationary phase condition requires that Vk(kz—ké)
evaluated at the stationary point be in the direction R.

Therefore cos ums = kmé R. Thus

41,212 =
IVk(k km)ls 2k

ms

o
sec ms

Equation 2.5.2 can now be written as

_ 2m? a_ ak__) R
I (R = ) ne oS e ¥ng 2.5.3

m
R sk _~sec o V|C )
' ms ms ms

This result can be used to solve equation 2.4.10.

The result is

> > g >
_ 1 d,. aka (k.)) _. ¢ .3
P(? 5.) - s 5 S 73 k R

s 2:.5.4
4TR s ks'sec aSV!CsT

where R - ¥ - ¥' and the notation ms, used. to designate a

stationary point has been dropped in favor of a single index

s for simplicity. In the rest of the text s =-1 will refer
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to the ordinary mode for which there is only one
stationary point, s = 2 - 4 will refer to the extraordinary
mode for which there may be as many as three stationary
" points.

Since the normal to the surface defined by Es must be.
in the direction of ﬁ, is is a function of R and because
of this ds' gs' O and CS will also be functions of R.
Therefore equation 2.5.4 is a very complicated function of
R in general.

The next two sections will discuss the quantities in

equation 2.5.4 for a cold plasma.

2.6 Characteristic Waves

The medium to which this paper will be applied is a
cold magneto-plasma. ' A cold magneto-plasma is one in
which the pressure term in the eguation of motion is
ignored. This is justified if the therﬁal velocity of the
electrons is much less than the phase velocity of the wave,
hence the name cold.

The characteristic waves for a medium described by X

satisfy
o= - - 2=+
(kI - k k - kg K)ea =0 2.6.1

There is a non-trivial solution to equation 2.6.1 if

det (k2T - K K ~ k2 %) =0 2.6.2
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which leads to the refractive index (k = ko n)

X
n? =1 - —_ 2.6.3
Y25in?6 v*sin"*6 s
1 - + + v2co0s?6
2(1-x) N 4a(1-x)?

called the Appleton-Hartree equation (Ratcliffe, 1959,
section 2.5)., X and Y have been previously defined in
section 2.2, and 6 is the angle between the wave normal k
and the D. C. magnetic field. 1In this equation Y is
positive for electrons. This equation is valid when the
frequency w is much higher than any ion associated
frequencies so that only the electrons are considered
movable. In this equation the + sign reférs to the so
called ordinary wave and the - sign refers‘po the extra-
ordinary wave. |

In the coordinate system shown in Figure 2.6.1 a can

@

Figure 2.6.1 Special Coordinate System for a

be written as (Ratcliffe, 1959, section 2.5)
-> 1
a = ——————— [R, 1, RQ] 2.6.4a

J1+|Rr|

where
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1}

j Y sin? 6 Y2 sin* o
R = + [ —————— + cos? 2.6.4b
cos 6 | 2(1-X) 4(1-X)2
j Y sin 6
0 = ————o (1-n2?) 2.6.4c¢c
1-X

The normalization of equation 2.3.8 has been used to get

equation 2.6.4a.

The results of the prewious section require_ﬁs and

s

a_ for the ray direction R. The following procedure is

used to find them:

j:.

If p is the angle,i makes with Eo,called the
ray angle, the stationary phase condition gives

values of 6 for which the normal to the surface'

makes an angle p with By.
Using this value of & in equations 2.6.3 and 2.6.4

ES and Zs in the coordinate system of Figure

2.6.1 are obtained‘(ﬁS = ks Z) .

ﬁé and gs are then transformed into the coordinate

system of the particular problem being solved.

Step one is the most difficult since there is no explicit

solution for 6 as a function of p. Therefore for a given

X and Y a table is generated which gives corresponding

values of p and 6. Then for a specific ray direction

this table is scanned to find the value(s) of 6 which

correspond to it.
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2.7 The Gaussian Curvature C

In a magneto-ionic medium the D. C. magnetic field
is an axis of symmetry. The surface defined by Es is
therefore a surface of revolution about the D. C. magnhetic
field. For this case the determination of the Gaussian
curvature becomes much simpler.

The Gaussian curvature for a surface of revolution is
given by 0'Neill (1966) as

g'{u) [g"(u) h"(u) -h'(u) g"(u)l-
h(u) [g'%(u) + h'2(u)]l? 2.7.1

C(u) = -

where the prime denotes differentiation and g and h are
defined in Figure 2.7.1.

a4

Axis of 7
Symmetry

g (u)

h(u) y
Figure 2.7.1 The Definition of g(u) and h(u)

For a magneto—ionic medium these parameters are
g(6) = k(8) cos 6 and h(6) = k(6) sin 6. Using these
functions in eguation 2.7.1 the Gaussian curvature becomes
k' (9) k?(6) + 2k'2(8)~k(6)k" ()

c(e)y = (. - cot )
k(6) [k?(8) - ki2(6)]?2

2.7.2
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This equation can be simplified by using the stationary

phase condition. Since the phase term must be stationary,

K im « R= 0. With respect to the D. C. magnetic field

X makes an angle 6 and R makes an angle p therefore

Y

Vk km cos (p=8) = 0. But km = km(e) so this eguation reduces
to g§ [km(e) cos{p=-68)] = 0. This leads to the result that
1 4k (e)
tan o = - 20793
k(6) Aae

where o = p - 6. Using this result equation 2.7.2 becomes

sin p cos o k" (9) 1
c(e) = (L + sin? o = ————— cos? q)
sin 6 k(8) k2 (o)

2.7.4

For a given ray direction p and a given refractive index
surface n the value of 6 is determined by equation 2.7.3
Equation 2.7.4 can be written in a differeht form.
Take the derivative of equation 2.7.3 with respect to 6.
After a little algebra
dp k"

— =1 4 sin? o -
dso k

cos“ o 2.7.5

Therefore equation 2.7.4 becomes

sin p cos a dp 1
c(8) = — 2.7.6
sin 6 ae k2(9)
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CHAPTER TIII

THE BISTATIC SCATTERING PROBLEM

3.1 Introduction

The bistatic scattering problem has a geometry which
is the same as a two-point communication problem. An
electromagnetic wave'is transmitted in a narrow beam at a
region containing random irregularities which are far from
the transmitter. A solution for the scattered power as a
function of the position of the receiving system is sought
for large distances from the scattering volume. The
central interest in this problem is the derivation of
scattering cross-sections.

The bistatic problem includes the monostatic problem
as a special case. In the monostatic problem the
transmitter and receiver are now located in the same place;

such scattering is called back-scattering.

3.2 The Solution for the Scattered Power

The geometry for the bistatic problem is shown in

Figure 3.2.1. The origin of the coordinate system is in

Figure 3.2.1 Geometry of the Bistatic Problem.
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the scattering volume V at 0. The transmitter T is
located at ;10 and the receiver R at ?Zoq The general
scattering point is located at . The path from the
transmitter to the scatterer is fl and the path from the
scatterer to the receiver is ?2, The problem is identical
to that considered by Booker and Gordon (1950) who were-
concerned with scattering from isotropic irregularities in
an isotropic background. Booker (1956) later generalized
the theory to anisotropic irreqularities. We wish' to:
generalize it further to the case of anisotropic background
“as well as anisotropic irregularities.

The received electric field is given by equation 2.2.6

2 == —
Bp(T20) = -ko J AX(F) T (Yaol7) « M - B, (r) ar 3.2.1
v .
Let the incident field be a characteristic wave
> >
eJki'rl
> > >
Ei(r) = Ay a; —— 3.2.2
¥

where Ay is the amplitude of the incident wave and Ei and

- . , . .
a, are characteristic wave parameters associated with a

ray direction ¥1. The Green's function T given by equation
2.5.4 is
, o> - ->
1 d g g* e_:}ks' (r20 -r)
=, N z S. 8 °s
T(rao|r) = —

v CS 1;20_;!

41 s k ec o
s S s

So equation 3.2.1 becomes



e k§Aq ; f dg(as *M-3)a, exp =3[R - (F20-F) K - (Fio-7)]
Eo(rae) = - =
R AT sy k_ seca_Y[C_] Tio-7| |Tao-r

] S S

. AX(r)dr 3.2.3

where ?1 = ;10—; has been used. The integrand of equation
3.2.3 is an extremely complicated function of t: There-
fore, the solution given by equation 3.2.3 is only formal,
since explicit evaluation in this general case does not
seem possible. Thus some approximations are necessary to
solvelfhis equation.

The incident wave parameters are functions of the ray

. . * > >
direction r: = ri;p-r and the scattered wave parameters are

functions of ﬁhe ray direction ;2 = ;20‘;, where ; varies
over the scattering volume V. If r,, and r,, are very
large compared to the volume V, then as T varies over the
volume V the changes in the ray directions ;1 ahd %Z will
‘be very small. For most media considered here these
small changes in ray direction will not have much effect
on the amplitude portion of equation 3.2.3. Therefore
assume that d_, gs' gi' koo Ogr Cgr |¥10-%] and |T2o-T|
are independent of ¥. More will be said about these

approximations in section 3.6.

Therefore equation 3.2.3 becomes

k2 a - % ﬁ - )—>
B (Fae) * —onn ] Te%t %)% IAX(Z)
R A7 s k_ sec O VIC-rr Tayg
s s S 10 v

* exp ‘j[ES(;zo‘;)'Ei”(;10";)]d§
3.2.4
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Let
2 - =
koA, dS(E;-M?gi)
A = - = 3.2.5

S ) Lo
47 kS sec as VICS] Yio0Xao

Thus equation 3.2.4 can be written as

gs J AX(¥) exp -j[Esa(§20°§)-Ei'(§10-;)]d;
v 3.2.6

Equation 3.2.6 is still a complicated function of r since

> >
ER(rzo) = 2 A

A

kS and ﬁi depend upon Y. Assume that ﬁs and Ei are
independent of ?, using the same reasoning as before but
being more restrictive as to the type of medium and/or
the size of the volume V. There are requirements on the
minimum size of V (see discussion in the paragraph about
<AX(;1)AX(;2)> in connection with equation 3.2.10) which
will not allow the volume to be made arbitrarily small.

Thus equation 3.2.6 becomes

. >
By (F20) = E A ag expl-j (kg Ta0-K;T10)] ! AX (%)
. exp[j(is—ﬁi).?]d§ 3.2.7
The magnetic field corresponding to ER can be found
by using one of Maxwell's equations UXE = —jwuﬁ, where

the medium has been assumed to be isotropic in its

magnetic properties. The magnetic field is

> > 1 > >
HR(rzo) = J ~— WEp(r2o)
wu
- 1 -
where V operates on r;, coordinates. To 0( ), H, is

2
Y20

R
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A
Ho(r ) =3 = (K xa)
20 s wi
* expl-3 (kg Ta0-ky+F10)] [ AX(¥) explj (K -K,) -F1a¥
v 3.2.8
The received Poynting vector is

1
Pp(Tz0) = — Rel[E (F20) x HY (¥20)]
2

>

3 1 > > g
R

> - - *.->
(£a20) = Re { Zs,tAs At [aS x (k_ x a, )]

e‘j(is‘ﬁt)‘;zo
t
20y

SI AX(R)AX () exp FL(K -T1-K_-T2) -k, (F1-T,)1dT1dT,}
v
Take the average value of this equation
B (T - 2 x @zt 1o KeKp) T
<Po(rz0)> = — Re {I A A¥ (3 x(X, xaF )le I WeTRe) "T20gy
s 't s t "t
2o Sit 3.2.9

where

-

T = [/<AX(T1)BX(F2)>exp{d [ (K -T1-K -¥2) K, « (F1-T2)]}dr.dr,
v 3.2,10
For this problem the average valug <AX(;1)AX(;2)>

is chosen to depend only on the relative coordinates

?1—;2, This follows if the random variable AX(?) is
assumed to be homogeneous. This assumption can be strictly
true only if the medium is infinite, which is nof the case
in this problem. If the volume V is very large in terms

of the largest correlation length associated with the
problem, then the edge effects due to the non-homogeneity
at the boundaries will be vefy small and the ranfom
variable can be assumed to be homogeneous. Let the

average value be given by
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<AX(;1)AX(§2)> = 4AX?> B (;1“;2)

where B is the normalized correlation function of AX.

With this assumption equation 3.2.10 can be written as

I = 4AX?> ffB(;1—;2)eXp{j[(zs';l—it';z)—§i°(;1“;2)]}d;1d;2
v 3.2.11
Now expand the wave wvector Et as a sum of Ks and a

remainder vector Et' Then equation 3.2.1ll can be written

as

I = <pxP>ss B(T1-To)explj (K -K,) &1-T2)lexpl-j b, -T,la¥,dr,
v 3.2.12
This equation can be simplified by making a change of

variables. Let n = r; - T, and r = ¥;. The Jacobian of

the transformation is

3%, 9%
) (;1 ,;2) —-3—% gz_

7 s 3 (3,3)  |e%, 9%.| .
a7 oF |

Then equation 3.2.12 can be written as

I = <pxP> ff B(R) explj (K -k,)-7-3 B -Tlan &f 3,2.13
v

Now consider the function F(gt) = é exp[~] Bteg]dZ; F(Et)

¥

is a function which has a sharp peak at bt = 0 and oscillates
and decreases rapidly away from Et =0 if 5% << I

(Tatarski, 1961). Since gt is the difference between

wave vectors of two different modes or saddle points it
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will be of the order 1/X. If the dimensions of the-

volume V are large in terms of wavelengths, then F(gt) will
be approximately equal to zero unless gt ~ 0. But Bﬁ'can
be  zero only if t = s. Thus F(0) = V and t. = s.

Therefore equation 3.2.13 becomes
I = vaR*> S B(1) expli(k k) -nNldA 3.2.14
V .

Since V is very large in terms of correlation lengths,
the integral over the volume can be replaced by an
integral over all space without appreciably changing the
value of I. Therefore equation 3.2.14 becomes

I = vqaR?> £ B(R) explj (kK -K;)-nldA 3.2.15

OO

The integral in the above equation is just the spectrum ¢

of the correlation function B. So finally
(k_-k.) 3.2.16

Thus the average Poynting vector at the receiver

given by equation 3.2.9 becomes

> > V<(AX)2> 2 > o> >, %
<PR(r20)> =._;;__— i |AS| oo (kK )Rela  x(k  x ag)]
H 3.2.17
Consider the factor
> - ok 3> o > > %
Rela X (kg  x a)] = Re[jasjzks - (kgragdal] 3.2.18

In the coordinate system shown in Figure 2.6.1
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1
a=———— [R, 1, RQI

/1+[R]|?

where R and Q are both imaginary in the propagating

region. Compute

zk
|32]2 k¥ = ——— (|R]2 + 1 + |R]2]|Q]?)
1+|R| 2

which is real, and

kRO

& 23" = —— rY, 1, ®iQ"

1+|R]|?

Thus
RQ
Re[2 x (Exa™)]= k [0, ~———), 1] 3.2.19
1+]|R|?

Figure 3.2.2 shows the relationship between the average

<P >, p———---
Pr k

y
Figure 3.2.2 Power in the directions of

the ray and group velocity.
Poynting vector and the component in the direction of the

wave normai. From Figure 3.2.2

~

-+
< =
PR> <PR>k sec O TYao

Thus from equations 3.2.17 - 3.2.19 and the above, equation

3.2.17 simplifies to
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vpRP >
= — 3 ]As[2 k, sec a @
2wy s

I )>

e S
B (ks_—};i‘)vrzo 3.2.20

Now find the factorfIASlzfrom equation 3.2.5
b2 *
lAlz=k0Ao lag MOTLESY
s
o

but |d |? = 1 for all possible surfaces.

The average power flow at the receiver is just the:

Poynting vector in the direction rzs. Its magnitude now

simplifies to

N kvo<(AX\)2>V |gs 'lVl-g_iI2
IR = - B

<P 2 2 2
27w S
3 uriorzo s k, sec o ]CSI

3.2.21
This is the expression of interest. The expression for the

scattering cross section is derived in the next section.

3.3 The Scattering Cross Section cé

The scattering cross section Oi is defined as- the
power scattered per unit solid angle from a unit volume
for the mode and saddle point s, with unit incident power
in mode and saddle point i (Cohen, 1962)

The incident electric?field is given by equation
3.2.2 as

expl] K. (1)« (F10-7)]
E, (F) = o3, (¥1) =

- ->
|£10-7]
Using the assumptions'of the preceding section this
equation becomes
=S -> -
. exp[j k; (rio) - (rio-r)]

Ei(r) = Ao_a.)i(rlo) 3¢3al
Yio
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The corresponding magnetic field can be obtained by using
the same method as in. the preceding section,

. > -+ >
> > Ao > > exp[j ki'(rIO'r)]
Wy T Tio

Thus, the incident. Poynting vector is
A2
0
B, = —— Rel3; x Gk, x &5
2WUri g
Thus using the same procedure as in the preceding
section the incident power is
2
Ag
P, = ——— k. sec Qq, 3.3.2
i 2uurys + i
The scattering cross section is
> 2
< >
i Pplra0)>, raoo
s
v Pi

Using equations 3.2.21 and 3.3.2 this 'equation becomes

L > % = 2
i ko 'as M‘ail ; > >
ol = cos a, cos a_<pxP>o_(k_-k.)
s 1672 k.k_|c_| 1 s B s "1
i“s'"s 3.3.3

Therefore the scattering cross section from mode i into mode

s is obtained by summing over the saddle points of s to get

[ -> % =°—>~ 2
OS = o z las M ai’

2 ‘ b
cos a, CoOs ag <AX >¢ ( kl)

s] 3 3.4
Equation 3.3.3 shows that the scattering cross section

16m? k.k_|cC
1 s

divides nicely into a portion which depends only on the
geometry of the problem and the properties of the medium,
and a portion which contains the properties of the random

process AX. Thus equation 3.3.3 can be written as
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: ko s > - 3
0; = GY (10,720,%X,Y) st (;10,;201X:Y) 3.3.5
l6,ﬂ.2 =] S
where
. lgg-ﬁ-z.lz .
G = cos O, Ccos o 3.3.6
S k.k ]C l 1 S
i“s' s
i = >
sg = x> o (k k) 3.3.7

The properties of these two functions will be:

discussed separately in the next two sections.

3.4 The Geometric Factor Gi

The only information necessary to calculate G; is
given by the geometry and the parameters of the background: .
medium. The orientation of the transmitted ray path and:

the scattered ray path to the magnetic field and the type

-

-5
a. a o, and”as.“ The

of mode determine ki' ks’ Cs' i, 3gr 94

tensor M depends upon the orientation and strength of the
D. C. magnetic field.

If equation 2.7.6 is udged for ]CS], equation 3.3:6
can be written as

a6 3.4.1

s
dps

sin 8 k2
s . - 8.

SO S AL

sin Pq dos a

. 0. k
s kl sec 0y sec o

S S

This equation can be divided into three factors which will

now be discussed.

arises from the ratio

k2
S
The factor
ki sec ai kS sec-onS

of k; to the product of the intrinsic powers (Re(a x k x a%))
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of the incident and scattered modes. This can be

seen from equations 3.2.18 and 3.2.19 and Figure 3.2.2.
As the medium approaches an isotropic medium (Y > 0) as
and o, approach zero and ks approaches ki. Therefore

this factor reduces to unity for an isotropic medium.

, sin®_ das 4
s1nps coso&s dp s
erties of the refractive index surface at the saddle point
ae o
. dpS
0 and the second derivative of the surface, and thus is

The factor

is related to the prop-

is a function of the angle

s defined by Pge The term

related to the curvature of the surface at the saddle
point. As the medium tends to isotropy, Gs_tends to g
SO o approaches zero and the surface tends to a circle

for which %% is unity. Thus this factor also reduces to

unity for an isotropic medium.

The final factor Ig* ~ﬁ-gi]2 has the following physical

S

meaning. The electric polarization induced by the incident
field 31 due to presence of electron density irreqularities

is Axﬁ-éi. Therefore, }E;

.ﬁegii is proportional to the
projection of the induced polarization on the scattered

field corresponding to mode s. As the medium becomes

isotropic by the decrease of Y, M becomes the unity tensor
= > % == > 2 - % -> 2
I, and |a  -M-a;|* becomes |a_ .a;|”*.

As Y approaches zero, R, as given by equation 2.6,.4b,
becomes ¥ j and Q, given by equation 2.6.4c,- becomes zero.

3o
For this special case the characteristic vector a is
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|+

j sin vy - cos p cos Y
1
A= — + j cos Yy - cos p sin ¥y 3.4.2
V2

sin p
where the fact that 6 = p for the isotropic case has
been used in equation 4 of appendix Al. The angles p and
Y are the spherical angles of the ray direction of the wave.
The geometry of this problem in terms of these angles

-

is shown in Figure 3.4.1. Thus the product 3;. a; is

Figure 3.4.1 The relation between the incident
and scattered rays.

(—l)zj sin y-cos p4COS ¥ (-l)h+ljsiny—cospicosy
1
a* .a, = - (—l)2+lj cos y-cos p_siny .(—1)hj cosy-cosp,.sin vy
s i 2 s i
sin Pq sin Py

where h = 1 for the ordinary mode and h 2 for the extra-

ordinary mode. The same is true of 2.

h+4% ‘ . .
[ (~1) + cos Py COS pg + sin p; sin ps]

N Nj—

[(-1)PE 4 cos 61 3.4.3
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where ¢ = Py ~ Pg is the scattering angle.

If the incident field is a superposition of

. . >% > ->

characteristic waves, a_-a, becomes I Ai(a
i

incident wave is assumed to be a linearly polarized wave

* >
s°ai)= If the
whose electric vector makes an angle n with the plane

defined by the incident and scattered rays then the

amplitudes A, are

Ay = cos n+ Jjsinn

A, = cos n - Jj sin n

Thus

] >k

iAi(as'ai)
o ) %

—~[ (cosn+9 sinn) (= (-1) "+cos¢)+ (cosn-j sinn) ((=1) "+cos¢) ]

2

il

cos ¢ cos n - j(—l)z sin n

Therefore for the isotropic case

% ==
Igs-M°3i|2 = sin®n + cos?¢ cos?n 3.4.4

which is exactly equal to the sin?y of Booker and Gordon
(1950) for the geometry used here.
The above analysis and equation 3.3.5 show that the
scattering cross-section for the isotropic medium is
ko <AXP> A A

6 = ———— (sin?n + cos2?¢ cos?n) o[k(r_-r,)] 3.4.5
1672 s 1
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This is exactly equal to egquation 17 of Booker (1956) when
written  for the geometry used here.

Two special cases for the geometric factor are of
special interest. The first is the forward scattering
case in which the scattering angle ¢ (see Figure 3.4.1) is
equal to zero. This case occurs when one is looking at
the transmitter through the scattering medium. The other
case is the back-scatter case for which the scattering
"angle ¢ is equal to m. This is the radar case which is
always of much practical interest. The geometric factor
for these two cases is identical because of the symmetry
of the refractive index surfaces considered here. These
“surfaces are surfaces of revolution about the magnetic
field which results in the symmetric nature of these
surfaces. For convenience, these two cases will be referred
to collectively as the forward-scatter éase.

Before discussing the forward-scatter case in general
two special cases will be discussed. For the case where
the scattering angle ¢ is zero the only angle necessary
“to describe the geometry is the angle p that the ray
makes with the magnetic field (see Figure 3.4.1). The
first case is longitudinal propagation for which p is zero.
The second case is transverse propagation for which p is
m/2., For these two cases the relationship among the vectors
is simple enough so that reasonably simple egquations

result.
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First find %%7 to be used in equation 3.4.1. From
2.7.5
dp 1’1" \
— =1+ sin® ¢ - —— cos? a 3.4.6
de n
: . . dp n"
Thus in order to find I one must know & and s From
equation 2.6.3
n2 =1 - X/(1-T) 3.4,7
Y2 sin? § _ |Y* sin* 9 e
where T = F — + ¥? cos? §] 3.4.8
2(1-X) 4 (1-X)2
Therefore
XT!
Nn' = - e—————
2n (1-T§ 2 3.4.9
2Y%singcoss _ 1{¥*sin“g _ 12 |4Y*sin®6cos6
Ti= + =] ———— ¥ 2c0s28 : -2Y¥?%sinfcosH
2 (1-X) 214 (1-x) 2 4(1-x) 2

Y2singcosg [ _[Y*sin*e _14 [Y?sin?e
= 1+ | ——————— + Y2cos?26 —_—

1-X 4 (1-X)? 2(1-X)

o]

3.4.10

So if & equals 0 or my2, T' is zero and therefore n' is

¥
zero. From equation 2,7.3 tan o = - %— and thus, since
n' is zero at ® = 0 or my2, o is zero at 6 = 0 or 7m/2,
Therefore for 6 equal to 0 or w/2
dp n"
_— =1 - - 3.4.11
dbé n

Now find %—. From equation 3.4.9
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XT n XTI 2 X2T 12
n" = — j— -
2n(1-T)2  n(l1-T)® 4n¥1-T)*
but T' is zero so
XTII
n" = - o
2n (1-T) 2
nlb XTII
n 2f12.(l—T)2

but from equation 3.4.
n"
n

From equation 3.4.10

1-X

¥? (cos?6-5in?6) _[r*sin*e6 _ ?sin?6
" = 1 ¥F|——— + Y2cos?8 v e - (1-X)
‘ 2(1-X)

Y%?sinfcosd { 1[Y*sin®*e _32 |Y%sin?0
+ —| ———*Y2co0s?0 —_— e (1-X)

7 n2(1-T) =1 -X - T, so

XT"

2(1-X-T) (1-T)

4 (1-%) 2

1-X — 204 (1-x)2 2 (I-%)
[4v*sin®6cosh ,
. ~ 2Y?%sinfcosh
4(1-x)?
__[¥*sin*e _u2 2¥%sinbcoss |
F |——— + Y2cos?s|
4 (1-%) 2 2 (1-X)

3.4.12

3.4.13
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Y% (cos?6-sin?0) [ _[¥*sin®g =Yz [Y?sin®6
T" = 1+ |— Y2cos?8 * | ——— = (1-X)

(1-X) 4 (1-X)? 2 (1-X)

+

Y*sin?fcos?6 [Y*sin"® _ve
o 2 2nt L
+ Y“cos“H
(1-%) 2

Y*sin®® “1[y2gsin?s 2
- |e————— + Y2%cos?9 —— = (1=X) 3.4.14
4 (1-X)2 2({1-X)

For 6 equal to 0 or m/2 the second term is zero so that

Y2 (cos?6-sin?H) _ [¥*sin®e -2 [y2sin?6 ‘
" = : 1 F |———— + Y2cos?8| — (1-X)]

1-X 4(1-x)2 2 (1-X)

4 (1-X)?

Thus from equations 3.4.11 and 3.4.13

de XY? (cos?6-sin?9) _[¥*sin*e _1z [Y?sin?6
— = 1+ 1¥ +y2cos?9 [ (1-X)|
dae 2(1-x) (1-T) (1-X-T)

4(1-x)2 2(1-%)
3.4.15
From this, one can compute the value of
sin p_ cos o_ dp k, sec o, k_ sec o
s S__ 1 1.8 S 3.4.16
: 2
sin es dae ks

for 6 = 0 and m/2. For 6 = 0 and w/2,as = o, = 0 since
n' is zero. For 6 = 0
sin Pg dp
lim —————— = —
g+g Sin es daé
Thus from the above and equations 3.4.8 and 3.4.15 équation

3.4.16 becomes
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sin p_ cos a_ dp k;jseca; kgsecag ky . Xy - 12
. 2 = 2(1- '
sin 6_  do k2 k 2(1-X) (1£Y) |
3.4.17
For 6 = m/2 equation 3.4.16 becomes
sin p  cos QS'fE_kisecui kssgcas ) Ei [l . X(1-X) ]
. 2 . R . -
sin 6 de kg L3 1-X-(v?%/2)(1+1)
3.4.18

Now Igg-ﬁ-gilz must be computed. In the coordinate

system of Figure 3.4.1, the quantity M is

=
]

}
o

3.4.19

From equation 2.6.4 for 6 = 0, R=F j and Q = 0. The
characteristic field for 6 = 0 can be computed from equation
Al.4 as

1
a=— [-1, ¥, 01
/2 :

i
o

3.4.20

where Y has been set equal to zero without loss of
generality. The characteristic field for transverse
propagation (8 = m/2) cannot be obtained in the same way
because R = @ or », The expressions for these fields are

given by Papas in section 6.6 with some modifications as

a]_ = [0] 0’ l] 3349213.
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XY

3 = [——— , -3, 0] 3.4,21b
1-X~-v?

where propagation along the x axis has been assumed.

For 8 = 0 the product E;sﬁ-gi is
_ L sy 2. -
0 1
1-y? 1-y?
. S,
1 jY 1 1 hg
—[1, -1)%3,01 |- o || -1yl 3.4.22
2 lez l_YZ l—Y
0 0 1]l 0o ]
While for 6 = m/2 the product is
af-me3;, =1 3.4.23a
ay.-M3, =0 3.4.23b
3?‘?';1 = 0 3.4.23(:
e = > 1 2Xy? - Xy )? ‘
az M.a; = 1+ N A —— 3.4.23d
1-y? 1-X-y? 1-x-¥2

The geometric factor Gi can now be computed for the
special cases of longitudinal and transverse propagation
for the forward-scatter geometry. Equations 3.,4.1, 17,
18, 22 and 23 can now be combined to obtéin Gi; The
results are shown in Table 3.4.l1, where 1 refers to the
ordinary mode and 2 refers to the extraordinary mode.
There is no cross mode scattering because of the
complimentary nature of the characteristic waves at these
two extremes. The expressions for 6 = 0 are symmeftrical

because the characteristic waves are a conjugate pair.
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Table 3.4.1 The Geometric Factor for & = 0 and 7/2

Geometric Factor G;

ils 6 = 0 6 = m/2

2(1-x%) 2 1
1 ooy =%
1] 2 0 0
211 0 0

' 2(1-X) 2 1 2xy?2 XY 2
212} Iy == 5= +(1 z—g7) 1}
X (1-X)
=7 Y2]

No such symmetry exists for 6 = /2, and so the two
expressions are markedly different.

While the expressions given in Table 3.4.1 are useful
for computing the range of the geometric factor for some
plasmas, they do not give any picture of what happens
between them. These expressions also do not giv; any
indication of the amount of cross mode scatteriné that may
occur. If the geometry of Figure 3.4.1 is used, equation

2.2.2 for M becomes

1 jY 0
_ 1
M = -3y 1 0 3.4.24
1-y?

0 0 1-v?2

The characteristic vector in this coordinate system is

given by equation Al.4, with vy = 0. n is given by equation
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2.6.3, C by equation 2.7.4 or 2.7.6 and o by equation
2.7.3.

The physical problem that is to be solved can be
described as follows; incident energy is beamed along the
z-axis and it is received on the z-axis, while the magnetic
field makes an angle B with the z-axis. This is equivalent
to the above geometry if the ray direction p is taken as B.
A computer program was written to solve the equations in
the coordinate system of £he preceding paragraph while
displaying the results in the above geometry.

Figure 3.4.2(a) shows the refractive index as a
polar plot with respect to 6 (6 = 0 is vertical). Figure
3.4.2(b) shows the curvature of n normalized with respect
to n? (a circle is thus 1). Figure 3.4.3 shows the
geometric factor of the forward scatter case for the plasma
shown in Figure 3.4.2 as a function of B. This plasma is
appropriate to the earth's ionosphere in the F-region for a
frequency of 20 MHz. Section (a) shows the scattering
from the ordinary mode into the ordinary mode. G starts
out at the value given in Table 3.4.1 for 6 = 0 and slowly
rises until the curvature starts to decrease (see Figure
3.4.2 (b)) when it rises rapidly to the value given in the
table for 06 = 7/2, The exact opposite happens with the
scattering from the extraordinary mode into the extra-
ordinary mode shown in section d. Sections (b) and (c)

. i
show the cross mode scattering. GS peaks at about 88° and
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(a) refractive index n

Curvature xn
H
|

(b) normalized curvature

Figure 3.4.2 The refractive index and Gaussian curvature
for X = 0.063 and Y = 0.075.



Geometric Factor

Geometric Factor

46

0 10°
- ‘o- L
©
£
IOO:____/,_/\ §I54_—
C % r
C e I
- Q -
o
K e t
|o".|||1||||||l;|||:|:|||||||||11|LA||| |65|l|llll|lll[l”ll o d oo b byl
20 40 60 80 00 20 KO 60 180 O 20 40 60 80 100 120 140 160 180
B B
(a) ordinary to ordinary (b) ordinary to extraordinary
-3 |
10— 10—
ﬁ 5
T
i = L
S
e
s T T —
n °® F
. E -
- [] -
[
b 0 -
- L
|65|||l|||||||l||||1|||||||||||l|||| l6' | ] ] I l 1 ] I ]
O 20 40 60 80 100 120 140 160 180 O 20 40 60 80 100 120 140 160 I80
B B
(c) extraordinary to ordinary (d) extraordinary to extraordinary

Figure 3.4.3 The geometric factor G; for forward scatter

with X = 0.063 and Y = 0,075,
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drops to zero at B = 90°. The range of angles for cross
mode scattering is very small for this plasma. The peak
value is slightly greater for scattering from "X" to "O"
than from "0" to "X".

Figure 3.4.4 shows. the refractive index and curvature
for a plasma with X = 0.2 and ¥ = 0.447. X and Y are now
much larger and so there is a much larger difference
between the ordinary mode and the extraordinary mode.
Figure 3.4.5 shows the geometric factor for this plasma.
Sections (a) and (d) show the much larger range of values
for scattering to the same mode for the larger X and Y
here. 1In this case the extraordinary mode self scattering
is always greater than that of the ordinary mode even at
transverse propagation. This result is expected for the
quasi-longitudinal part where the characteristic waves
are elliptically polarizéd. The sense of rotation of the
extraordinary mode is the same as the sense of rotation
for the electron about the magnetic field. The cross mode
scattering shown in sections (b) and (c¢) now has a much
broader range and a peak value which is only about 2 orders
of magnitude less than the self mode scattering. The
peak value of the cross mode scatterimg is again slightly
greater for "X" to "0" than for "0" to "X".

The two preceding examples are for very simple
plasmas and the results are quite reguiar. This is not

the case for those plasmas for which the shape of the
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(a) refractive index n

Curvature x n2

(b) normalized curvature

Figure 3.4.4 The refractive index and Gaussian curvature
for X = 0.2 and Y = 0.447.
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refractive index surface of the extraordinary mode differs
significantly from the ordinary mode. The next two
examples are of this type of plasma.

Figure 3.4.6 shows the refractive index and the
Gaussian curvature of a plasma with X = 0.5 and Y = 1.173.
The major feature of the extraordinary refractive index
surface is the large relatively flat area from about 6 = 20°
to 6 = 60° for which p is approximately 65°. Figure 3.4.7
shows the geometric factor for forward scattering for this
plasma. The ordinary to ordinary scattering shown in
section (a) has the same form as the preceding plasmas
with a larger range from longitudinal to transverse
propagation. The cross mode scattering shown in sections
(b) and (c) has the same general shape as before peaking
at about 65°, The peak value of "0" to "X" scattering
is now about an order of magnitude larger than "X" to "0"
scattering. The crOSS'mode=scatte;ing'from ordinary to
extraordinary is also of the same order of'magpituae as
the self mode scattering. The real complication for this
plasma is in the self mode scattering for the extraordinary
mode shown in section (8).: The most salient feature
here is the rapid changes in the--amplitude arotnd B = 65°,
The reason for these rapid changes is that when B ~ 62.3°
RQ sin 6 = cos & which causes the x component of equation
Al.4 (y = 0) to pass through Zero from negative to positive.

(2X-1)
X

At this point a*M.3 = (1-Y2). Since X = .5 for the
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(a) refractive index n
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(b) normalized curvature

Figure 3.4.6 The refractive index and Gaussian curvature
for X = 0.5 and Y = 1.173.
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Figure 3.4.7 The geometric factor Gi for the forward scatter
case with X = 0.5 and Y = 1.173.
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case being considered here; the' geometric  factor goes to

zero at this point. This type of behavior is always
2

X

possible when lE is greater than one (RQ sin 6 = cos 6 ~

2

] 2 —
1—x Sin® 6 = 1).

Figure 3.4.8 shows therefractive index and Gaussian
curvature for a plasma with X = 0.925 and Y = 0.354. The
major feature of the refractive index shown in section (a)
is the asymptotic behavior of the extraordinary refractive
index. The asymptote is at 6 ~ 50° which has a ray direction
of 135°. The curvature for the extraordinary mode starts
at 50° because of this behavior. Figure 3.4.9 shows the
geometric factor for:this plasma. For ordinary self mode
scattering shown in section (a) the shape of the curve is
the same as before but the range of the curve is now from
8 X 107" at 8 = 0 to 1.33 X10' at B = 90°. This results
in a beam about B = 90°. The scattering into the extra-
ordinary mode from either mode, sections (b) and (d), is
much different than anything encountered previously. These
curves wouid go to infinity if the refractive index were
allowed to do so, but the cold plasma theory used here is
not valid at such large values of the refractive index.
Actually a warm plasma theory would not go to infinity
but thé geometric factor would still be very large and
very narrow in shape. The self mode factor is about 2
orders of magnitude larger than the ordinary mode factor.
At B = 90° the self mode factor for the extraordinary mode

has a value of 5 X 10°%.
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Figure 3.4.8 The refractive index and Gaussian curvature
for X = 0.925 and Y = 0.354,
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Figure 3.4.9 The geometric factor Gé for the forward scatter
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These are just some representative examples for the

geometric factor of the forward scatter case. For this
case the geometric factor needs only three parameters to
- completely describe it, X, Y, and the angle the ray
direction makes with the magnetic field. The general case:
“requires five parameters to completely describe it, X, Y,
the angles the incident and scattered ray make with" the -
magnetic field and the azimuthal angle between the incident -
and scattered rays. This makes a meaningful display of

i

G

g for the general case very difficult.

The best way to display‘the results is as  a contour
plot of the geometric factor for the natural physical
situation. That is given X, Y and the incident ray, plot
the geometric factor as a function of the two angles
associated with the scattered ray. The qeomet:yvthat is
used in the figures is shown in Figure 3.4.10. The incident
ray is always in the X7 plane and has the values ¢i =0,

45, 90 for each set of figures. The values of the contours

are the values of the geometric factor G;; Solid lines

z
//'&Bo Scattered
% ! ray
incident [ ¢. ¢
ray | |
f
I N | b
i N 1
: \ys \\|
]

X

Figure 3.4.10 The geometry for the general case.
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are powers of ten while dashed lines represent values
other than 10", Both ws = 0 and 90° are planes of even
symmetry.

The first set of figures are for a plasma with X = 0.2
and Y = 0.447. The refractive index and the Gaussian.
curvature for this plasma are shown in Figure 3.4.4. - The.
refractive index surfaces for this plasma are very regular-
and it is therefore typical of the type encountered in
higher frequency studies- of the ionosphere.

Figure 3.4.1l1 shows the geometric factor for
" scattering from ordinary to ordinary. ' For the incident ray
along the magnetic field,'Gi is independent of ws as is
seen by the straight lines in section (a). The same is
almost true of the incident ray perpendicular to the
magnetic field as shown b? section (¢). For ¢; = 0 there
is one minimum at ¢s = 90° (perpendicular to go), and
“broad maxima in the direction of the magnetic field. For
¢i = 45° (section b) the maximum has shifted to ¢S = 60°
for ws = 0. As ws increases to 90° G becomes very flat
varying between .2 and .4. For ¢, = 90° there is one
broad maximum at ¢S = 90° and minima along the magnetic
field. The peak value of G varies by less than an order of
magnitude from ¢i = 0° to 90°.

Figure 3.4.12 shows G for scattering from the
ordinary ray to the extraordinary ray. The independence

of ws for ¢i = 0 and 90° is again shown in sections (a)
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and (c¢), but now the peak values differ by about an' order:

of magnitude. For ¢i = 0° there is a broad maximum at.

¢é'= 90° and minima along the magnetic field. For ¢i¥==45°
the maximum has moved to ¢S = 115° at ws = 0°, The surface
is not as flat in the region around ws = 90° as 'in the- .

previous figure. For ¢i = 90° there are broad maxima at

¢~ 55°and 125 and minima at ¢S = 0, 90, 18C~

S
Figure 3.4.13 shows G for scattering from the extra-
ordinary mode to the ordinary mode. Now only ¢i = Ogis
independent of ws. It has two maxima at ¢S ~ 70° and 110°
and minima at ¢s = 0, 90, 180°, For ¢s = 45° the shape of
G is approximately the same as for "0"-"X" scattering.
The peak wvalue for ¢i = 45°is almost an order oﬁimaghituae
greater than that of ¢i = 0% For ¢i = 90° G is no longer
independent of ws‘ With ws = (°® there is a sharp minimum
at ¢s = 90° which increases in width as ws approéches
90°. The peak value is abou; the same as that for ¢i = 459
Figure 3.4.14 shows G for self mode scattering for
the extraordinary mode. The major feature is that the
surface is quite flat, compared to the other figures, for

all values of ¢i’ ¢ and ws’ As ¢i increases the range of

s
values decreases a little.

This set of figures shows that even for a refractive
index as simple as this the' value of the geometric factor

is very variable. The exception to this is the self mode

scattering of the extraordinary mode. This result is quite
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unexpected. Appendix A2 contains a series of plots of @

for by = 0° which give a better idea of the transition from

¢,

= Q° =
i = 0" to ¢i = 90°.

If a more variable refractive index is chosen the
results are quite different for most cases. Figure 3.4.8
shows the refractive index and Gaussian curvature for a
plasma with X = 0.925 and Y = 0.354. The ordinary
refractive index is similar to the refractive index of
the preceding example but of smaller size. Therefore
there should be some similarity for the ordinary mode
self scattering. The extraordinary refractive  index is
completely different from the preceding case. The curva-
ture is of the opposite sign and the refractive index has
an asymptote at 49 degrees with respect to the magnetic
field for the phase direction. The ray direction which
corresponds to this is about 137%. Therefore the ray
direction can vary between 42 and 137 degrees. Care must
be taken in interpreting the results near the asymptotes
since the cold plasma theory breaks down in this region
and the Gaussian curvature is small and approaching zero
which will violate the requirement that the third derivative
of the surface be negligible compated to the second
derivative (Gaussian curvature).

Figure 3.4.15 shows the self mode surface of the
ordinary mode for this plasma. The shape of these curves

are similar to those of the preceding case but the
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“magnitude is different. The magnitude "is about half of
the preceding case for ¢i = (°while it is an order of
magnitude greater for ¢i = 9. For ¢i = (® the maximum is
very broad and flat decreasing very rapidly to a minimum
at'¢s = 90% There is an order of magnitude increase from

b,

— ° = o : = o - o
i = 0°to ¢i 45%and again from ¢i 45°to ¢i 907

Figure 3.4.16 shows the cross mode scattering from
ordinary to extraordinary. There are no values below

¢

s = 45°or above ¢s = 135°for the reason meptioned above,
The obvious feature of this figure is the very large
values of G. If a more accurate theory were used in
computing G the peak values might be a little less but
these figufes still show the trend of the surface for this
condition. Of course there is no similarity to the
corresponding surfaces of the preceding case. For ¢i = 0°
there are minima at about ¢S = 75° and 105°, with very
large values at ¢s = 45°and 135¢% At ¢i = 45° the minimum
is at ¢S = 115° and is deeper. Finally at ¢i = 90° the
surface goes to zero at ¢s = 90°,

Figure 3.4.17 shows the cross mode surface from
extraordinary to ordinary. There is no extraordinary mode
for ¢i < 42° so there are only two sections to this figure.
For ¢i = 45° there is a maximum at ¢s = 90° and a minimum
at ¢ = 150°. The peak value is about an  order of magni-

tude greater than the previous case., At Wi = 90° G has a broad
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maximum which gets flatter as ws increases and a sharp
minimum at ¢s = 90°, .

Figure 3.4.18 shows the self mode surface for the
extraordinary mode. The large values characteristie of
scattering to the extraordinary mode are again evident and
the same comments apply to them. The minima of both
sections occurs at'tbS = 90°_and wé = 90°,"

This last set of figures shows a markedly different
behavior from the first set. The main reason for this
behavior is the rather flat refractive index associated with
the asymptotes. 1In this region the curvature is less than
one and so G is increased from the value for the isotropic
medium. Physically the large scattering associated with
this flat area is expected since as the refractive index
becomes flat, many more rays carry energy in approximately
the same direction as the exact ray; that is, the rays
diverge less, and so more energy should be received for

a given incident power..

i
3.5 The Statistical Factor Sg

The statistical factor is given by equation 3.3.7 as
i _ > T o>
s = AXP> op(k-k;) 3.5.1

where @B is the spectrum of the correlation function B for
the fluctuations AX. This function depends upon all the

previous parameters X, Y and the geometry of the magnetic
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field, the incident ray and the scattered ray, and in

addition it depends upon the statistics of the fluctuatiens.
The reduction of this function to the isotropic case

is straight forward. For the isotropic case kS = ki =k,

so that equation 3.5.1 becomes

S = ¥ oglk(z -r,)] 3.5.2

~

where ry is a unit vector in the direction of the scattered

A

ray and r is a unit vector in the direction of the incident
ray. This is exactly the factor P in equation 17 of

Booker (1956). Thus equation 3.5.1 is just the obvious
generalization of equation 3.5.2 to the anisotropic case
considered here. Therefore all the previous theory
developed for the isotropic case is valid here if it is
evaluated at the more correct point (Es—ﬁi) instead of
k(rs—ri).

The forward scatter case is different from the back
scatter case for Si, which was not true for Gi. For the
forward scatter case the incident ray and the scattered
ray are in the same direction, so egquation 3.5.2 is
<A > ¢, (0). The same is true of equation 3.5.1 if
s = 1. Thus for plasmas with one saddle point for each
mode the self mode forward scatter statistical factor
is identical to that of the isotropic case. The cross
mode factor is the addition given by the anisotropic

situation.,
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~If the correlation function of: the fluctuations is

a Gaussian function given by

N X Y Z
B(R) = exp[-( + + )1 3.5.3

2]2.’ 22 2[2

X v z

where ¢ is the correlation length, then the spectrum is

1
A 3/2 ) - 2 1.2 2 1.2 2 1,2
@B(k) T szy lz exp [ ; (QX kx + zy ky + lz kz)] 3.5.4

Since k = ky n and ko = %1, this equation becomes

42 22 22
k) = 132 3 8 8 exp[-m2(2-n2 + XL n2 4+ Z_ n2)]
<I)B( m X 'y zZ P 3 2 b4 32 Y 32 2

Since n is not a very large number, the value of @B
will be determined primarily by the ratio of the correla-
tion length to the free space wavelength. If this ratio
is large (say 10) and n is of the order 1 then @B will be
negligibly small. This implies that the cross mepde
forward scattering is extremely weak when the ratio is
large because @B is small if n is of order 1 or if n is
small the two modes are nearly identical for which the
geometric factor discussed in the previous section is small.
The case of n smalllis disCu$sed further later in thiF
section. | |
For the back scatter case the scattered ray is: in
the opposite direction from the inciflent ray so equation
3.5.2 becomes <Ax?> 2, [2k ;i]. For this case even the

isotropic spectrum depends upon the ratio of the correlation
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length to the wave length. For this case

> > ~
@B(ks—ki) = @B[—ko(ns+ni)ni]

~ ~

where n.n. and n, are evaluated for the ray direction r;.
Therefore, if the isotropic case has a finite value for

o the anisotropic case will have finite solutions for

B’
@B from both the self mode terms and the cross mode terms.
In other words, if there is some back scattered power,

the cross mode terms may be significant.

In the general case for the isotropic medium the spec-
trum is evaluated in the so called mirror direction
(;S—;i). That is, if a mirror were placed in the scatter-
ing volume such that its normal is in the direction
(;S—;i), the scattering problem is duplicated by the
reflection problem. In the genergl-case‘for the aniso-
tropic medium the direction of evaluation does not have
this simple meaning. The mirror directidn is properly
defined by the wvector Ks-ii not by the vector ;s—;i.

This can be seen from Figure 3.5.1. If a wave is incident

. ->
Ck
s

-

(7

Figure 3.5.1 k in the case of a reflection.

on a perfect conductor in the X-Y plane with the wave
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vector ii in the X~Z7 plane, then the reflected wave will
have a wave vector Es in the X~2 planeé such that the-X
component of ii and ﬁs are egual. The value of the z
component is such that is lies on the refractive index
surface. Therefore in this coordinate system the mirror
vector Es_ﬁi is a vector in the 2z direction which is
normal to the mirror. The same description holds for the
isotropic medium but for this case Es—ﬁi = k(;s-;i) since
the ray direction and the phase direction are the same.
In the quantum mechanical scattering a temm Esfii appears,
which represents the change in momentum of the particle
which occurs during the scattering process. This is just
the conservation of momentum. Since the wave vector k is
the wave analog of the momentum, this is an alternate
description of the mirror vector. ' Therefore the scattering
problem and the reflection problem are still the same as
far as the mirror vector is concerned if it is properly
defined.

| An examination of*@B(Es-ii)'would seem to indicate
that the cross mode scattering should get better as the
medium becomes more isotropic since kS approaches ki’ but
as was shown in section 4, the geometric factor for cross
mode scattering decreases to” zero as the medium becomes
isotropic. Thus although @B is increasing, its maximum
value is only ohe, while the geometriC‘factor for cross

mode scattering is orders of magnitude less than that for
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self-mode scattering. Therefore the cross mode power will.
be - insignificant when compared to the self mode’ power.

80 far nothing has been said about the other part.of
the statistical factor; <AXP?>. The mean squared value of.
a stationary random process is a measure of the intensity
of deviations of the process from zero. In other words
<AXP?> is a measure of the intensity of: the fluctuations.
The appearance of this factor in the scattering cross-
section says that the scattering cross-section is directly
proportional to the intensity of the fluctuations.

Evaluation of Si in specific cases requitres, in
addition to the information about the medium and the
geometry, a specific model of the fluctuations which give
rise to the scattering. Table 3.5.1 gives some specific

correlation functions and the spectrum which corresponds

Table 3.5.1 Correlation Function and Spectrum Pairs.

Type Correlation Function Spectrum
IR/%0] BT 4.
exponential e IR/ %0 __E_—&;__
[1+k2275]2
-p2/92 3 -
Gaussian "R /%o T3 0, e (k%,/2)
E S 2 3
Bessel R K1(%~) ol 22 57
20 0 [l+k220] 2
2 -
Cauchy [1 + B? z m2 95 e ko %o
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to them (Wheelon, 1959). These pairs are evaluated- for
fluctuations which are isotropic. A discussion of the
limitations, type of problems used in and the reasons: for::
- assuming each model can be found in Wheelon's paper.-
Tatarski (1961) also presents a good discussion of these
different models for the fluctuations in section 4.4.

If the fluctuations' are assumed to be anisotropic
(having a different correlation length in different
directions), the spectrum function is more complicated.
Equation 3.5.3 is the appropriate Gaussian correlation
function with different correlation lengths along the x,
y and z-axis, and equation 3.5.4 is the spectrum function
which corresponds to it.

The use of the Gaussian correlation function is not
“suggested by any physical attributes of the fluctuations.
Its use is desired because it generally reduces the
difficulty of the integrals involved since it goes to

zero as the argument exceeds one or two correlation lengths.

3.6 The Approximations Used

The approximations  used in obtaining the results of
section 3f2 can be divided into two groups. ' The first
group contains the approximations which are typical of
problems of this type,; no matter what type of medium is
assumed. The second contains those approximations which
are peculiar to the problem with an anisotropic background

medium.
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The first group cvontains® three-approximations. The
first two are restrictions on the size of the scattering
volume V. They are: -~ the scattering volume must be large
in terms of wavelengths: and the’ scattering volume must be
large in terms of correlation: lengths. The third approxi-
mation is the far field approximation. This approximation
can be stated more precisely as l?lo—;] ~ rio and
|§20—?| ® ryo, where ; ranges over the scattering volume.
|To-T| can be expanded as

Y A A r?

> >
|ro-r] = ro {1 - —roer + —
Yo 2r,

[1 - (o-r)2] + ...} 3.6.1

Therefore if r/ro can be'neglected in comparison with one
the above approximation is satisfied.

The second group of approximations contains two
approximations dealing with the parameters of an aniso-
tropic medium. The first reguires that the variation of

-> >

the factors involved in the magnitude portion (ds, s 8y

k ki and Cs) is small when r varies over the scattering

s’
volume. The second approximation requires that the phase
variations caused by the: variation of'ES and ﬁi over the
scattering volume are negligible., The second of these.
will be the most restrictive in general since phase
variations generally have a far greater effect than ampli-
tude variations.

The quantities involved in this second group of

approximations are all explicit functions of the angle
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8 and therefore their wvariation depends upon A6, the
variation of 6 over the volume V. A6 is related to Ap,
the variation in the ray direction over the volume. Ap
is simply related to the distance to the scattering volume
ro and the diameter of the: scattering volume perpendicular
to ;o designated by dm. " This relation is
6!

tan(Ap) = —
2ro
If the far field approximation is met, Ap is a small

angle and therefore

. 9

Ap N — 3.6.2
2ro

This eguation connects’ the second group of approximations
to the first group. Equation 3.6.2 is consistent with the
far field approximation since the maximum value of r
perpendicular to ;o is dm/2.

Since A6 is small it can be approximated by the

first term in the Taylor series. Thus

ase
Ae = ee— Ap 3.64;3
dp 04
If equation 2.7.6 is uysed for g%, this equation becomes
sin pg cos ag
AB = Ap 3.6.4
sin 6o n? C

n

where Cn is the Gaussian curvature of the refractive index

surface given by n (C = Cn/kﬁ)a The factor
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sin pp cosoy
sin 6,

usually has a value much closer to one than
n2Cn for a given situation, so the main factor in deter-
mining Af is nZCn.

If n2Cn is large, the effect of a given Ap will be
small. A large value of Cn means that the radius of
curvature is small (see Figure 3.4.6) and therefore n is
changing rapidly. Thus the more n changes for a given
change in 6 the smaller will be the effect of a given
change in ray direction. These regions are the most
advantageous from the: standpoint of the second group of
approximations since a given Ap results in a smaller AS
and therefore a smaller variation of the quantities in
these approximations.

The opposite results occur when nzcn is small. Care
must be taken here since if C, is too small the third
derivative of the refractive index will ﬁot be negligible
and a more refined theory will be necessary. If the
curvature is small the radius of curvature is large and
the refractive index does not change much for a given
change in 6. This is a "flat area" in the refractive
index surface (see Figure 3.4.6 at about 6 = 40°). Now
the effect of a given change in p is magnified instead
of diminished. This is the worst case for the approxima-
tions since a given Ap now results in a larger A6 and
therefore a larger variation of the quantities in these

approximations.
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Table 3.6.1 gives the variation of some of the
guantities involved in the second group of approximations
for the extraordinary mode of a plasma with X = 0.5 and

Table 3.6.1 Selected Variations of Quantities for the
Extraordinary Mode with X = 0.5 and Y = 1,17

o 0 n n*c_ ,%% % %% nZén d(g:Cn)
5¢ 1.11°} 1.984 19.43 0.23 -0.035% - 0.62%
50° 15.69°| 1.779 3.98 0.59 | -0.7 % - 7.64%
65° 32.55°] 1.446 0.52 2,72 -3.04 % :=32.12%

Y = 1.17 (see Figure 3.4.6). The discussion of the
preceding paragraphs is shown in the columns labeled
n2Cn and g%. In the first two cases n2Cn is greater than
one and so A9 is less than Ap. In the last case nzcn is
less than one and therefore A6 is greater than Ap.

The sixth column is the variation of the phase. The
phase is approximately given by

1 dn

(1 + — — Ap)k|
n dp

k-r ® r 3.6.5

ro
Thus % %% is the percentage change in phase for a unit
change in ray direction. ~Table 3.6.1 shows that the

phase variation can probably be ignored for the first

two cases, but Ap doesn't have to be very large before

the phase variation of the last case becomes significant.
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The last column gives the variation of one of the
factors involved in the magnitude. Again the variation
of the first two cases is8 probably negligible, but the
last case has a rather large percentage variation and
therefore may be significant. The remaining factors in
the magnitude deal with: the characteristic vector. The
magnitude of the characteristic vector is a slowly varying
function of 6 and therefore its variation is always
negligible. The remaining factor is the product of two
characteristic vectors with M. ' For most cases this factor
should have the same behavior as the magnitude of the
characteristic vector. ' The exception to this will occur
when the product gs-ﬁtgi'has-a small value.

The results of this section show that the additional
approximations due to' the anisotropic medium are consistent
with the approximations: normally encountered in this type
of problem. At the same time' they are highly dependent
on the properties of the medium in the neighborhood of the
saddle point and therefore generalizations can be

misleading.

3.7 Applications of the Results

The results of this chapter will be applied to two
problems. The first is a discussion of the modification
of the theory used to interpret partial reflection data.

The other problem is the possible ducting of whistlers
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along the magnetic field by the scattering process. The
discussions of these topics will be qualitative instead of
quantitative because of the need for a more refined theory,
different in each case, to accurately describe the important
features.

The partial reflection experiment is used as a means
of measuring the electron density in the region 50-100 km
(Belrose and Burke, 1964). The experiment consists of
sending up a short pulse of one characteristic polarization
and measuring the return .echo and then doing the same
for the other characteristic polar%zation. The ratio of
the received power of the extraordinary mode to that of
the ordinary mode is then related éo the electron density
through a theory involving an assuﬁed collisional model.
The frequency that is used in thesé'experiments-is around
one megahertz which means that Y will be of significant
value.

The theory that is used to determine the density is
an application of the isotropic scattering theory of
Booker (1956) to a plasma in which collisions are.
important and therefore there is loss. Since the
scattering theory developed here i§ for a lossless plasma
with negligible collision frequency, it cannot be applied
directly to the partial reflection problem. Instead of
redoing the theory to make it applicable, the partial

reflection theory will be simplified so that it may be
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compared to the scattering theory developed here to
determine what type of factors have been neglected by the
isotropic scattering theory.

The theory of partial reflections is presented in a
paper by Flood (1968). Equation 14 of that paper gives the
ratio o of the backscatter cross sections of the extra-
ordinary mode to the ordinary mode for the quasi-longitudinal
approximation as

o} @(&X) né {1 - exp[—(4ﬂn;/k)CT]}

o = = = 3.7.1
o

F ®(F,) ni {1 - expl-(4mni/r)crl)

where

§ =2k = 2k, nt ﬁi

ni = imaginary part of the refractive index

n® = real part of the refractive index

T = radar pulse length
In this equation those terms that depend upon ni are the
result of absorption due to collisions and are not present
in the simple plasma model used in the development of the
scattering theory presented here.

The value of o using the scattering cross section
developed here (given by equation 3.3.5) for self-mode
scattering is
| 2

2 >
Do S€e” dg I'Co] 2 (q,) 3.7.2

2
o
n2 sec? a lc T ®(3,)
X x !7x o

where the C used here is for the refractive index n. If

the imaginary part of the refractive index is small, the
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real part will be essentially the same as for the lossless
case. With this assumption, Flood's theory gives the
modification to the lossless theory to account for loss.
Therefore equation 3.7.2 serves as the correction to the
portion of equation 3.7.1 to account for an anisotropic
background medium. Using Flood's' correction for loss,

equation 3.7.2 becomes

¢ =F op 3.7.3(a)
where
Ig;.ﬁ-gxlz n; sec?a_|cC,|
F = 2‘ - rur— 5 3.7.3%..(}3)
n? sec ux]Cx] |a-M-a |

F is just the ratio of the self-mode geometric factors for
the extraordinary mode and ordinary mode. The factor F
given by equation 3.7.3(b) is only approximate since it
was derived using a collisionless plasma theory which is not
valid in the region of the ionosphere of interest here.
The modification of F should not be too great in so far

as it depends upon the real part of the refractive index.
Any additional factor in F due to the imaginary part of
the refractive index would not be such that it would make
F closer to unity, so F given by equation 3.7.3(b) should
give a reasonable first approximation to the modification
of Flood's theory due to the anisotropy of the background

medium.
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Due to the low freguencies used in the partial
reflection experiment, Y will have a significant value and
therefore F can be significantly different from one.
Belrose and Burke (1964) used a frequency of 6.275 MHz
for their experiments. This corresponds to a value of
Y = 0.24 for the earth's magnetic field. For an electron
density of N = 10" electrons/cc, X = 0.142. The value of
F can be obtained for longitudinal propagation from Table

3.4.1. It is

3.7.4

_ 2 (1=X) (1+Y)+XY] 2
F = :
2(1-X) (1-v)-XY

With the above values of X and Y, F

1.6. Therefore even
for these small values of X and Y, o is underestimated by
‘about 50% using the theory given by Flood. Since 6 MHz is
a high frequency for a partial reflection experiment, the
degree of error will be much worse for the frequencies
usually used in this type of experiment.

This addition to the theory of partial reflections
causes another complication. - In the partial reflection
experiment ¢ is measured from the data for different
heights. At a low height the absorption is very small and
so the density N can be determined. This N together with
an assumed model for the collision frequency can be used
to solve for the density N at a slightly higher height and

so on. The new complication is that the factor F also
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depends upon the density and therefore makes the determina-
tion of the density more difficult.

In the partial reflection experiment only the self-
mode scattering is considered.  Additional information may
be available if cross-mode scattering is considered. 1In
section 3.5 the cross-mode’ gscattering was shown to be com-
parable to the self-mode scattering for back scatter if
there is a significant difference between the refractive
index for the two modes.

In order to do an accurate calculation for the type of
plasma encountered in the partial reflection experiment the
theory developed here must be redone from the start., A
new Green's function must be derived along the line of the
development of the generalized Appleton-Hartree formula
given by Sen and Wyller:+<(1960). Characteristic fields
appropriate to this type of plasma must also be used. The
rest of the theofy should proceed smoothly but' a new set
of approximations will probably result.

The second application concerns whistler propagation.
Whistlers are manifested through a mode of radio propagation
in the upper ionosphere in which the energy propagates
nearly along the magnetic field to the opposite hemisphere.
The whistler may bounce back and forth between the two
hemispheres several times. Whistlers originate from
lightning flashes in the atmosphere. The name whistler

comes from the fact that this mode is highly dispersive,
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so if a pulse starts out it will quickly be distorted
with the higher frequency arriving first giving a descending
tone if the signal is detected.

The mechanism by which the whistler is guided along
the magnetic field line is not definitely known. Helliwell
(1965) presents an extensive discussion on the ducting of
whistlers by field-aligned irregularities.’ The application
of the theory presented here will show that scattering in
general in an anisotropic medium can cause’ the guiding of
whistlers.

The theory of whistlers shows that the minimum time
delay occurs for a frequency such that Y = 4. This is the
so called "nose frequency." The discussion that follows
is for this frequency.

Figure 3.7.1 shows the refractive index and normalized
Gaussian curvature for a plasma with X = 40 and Y = 4.

For this plasma only one mode propagates. The obvious
feature of this refractive index surface is the very small
range of the ray direction centered about zero degrees.
The Gaussian curvature for this plasma (shown in section
(b)) has a very small value and goes through zero twice.
The first zero corresponds to a point of inflection with

a ray direction of seven degrees and 6 = 32 degrees and
the second corresponds to a point of inflection with a ray
direction of zero degrees and § = 55 degrees. This

second point of inflection is the important one for the
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Figure 3.7.1 The refractive index and Gaussian curvature
for X = 40.0 and Y = 4.0.
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propagation of whistlers.  'Since there axe two points of
inflection, the contribution to the field in a given
direction may come from as many as three saddle points.
The first saddle point extends from 6 = 0° to €6 = 32° with

ray directions from p = 0° to p 7°. The second saddle

point extends from 6 = 32° to 6 = 55° with p = 7° to

o = 0°., The third saddle point extends from 6 = 55° to

S 74° with p = 0 to p = 343°. The refractive index was
terminated at a value of 10 for clarity of presentation.
Figure 3.7.2 shows the geometric factor for
scattering from a wave incident along the magnetic field,
which is zero degrees in the figure, versus the
scattered ray angle. The incident mode in this figure is
the first one for which 6 = 0°. Section a shows the self
mode. geometric factor. It goes to infinity at a ray angle
of seven degrees. This is due to the point of inflection
at 6 = 32° which has zero Gaussian curvature. Near this
point the Green's function used here is not valid and a
more refined theory must be used as was mentioned in section
2.5 in connection with vanishing Gaussian curvature.
Section b also shows this condition as well as a similar
condition at 6 = 55°, At this point of inflection the
ray angle is zero degrees. Section c shows the sharp rise
at zero degrees and another at 17°. The latter one arises

from the asymptotic behavior of the refractive index.
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Figure 3.7.2 The geometric factor for a plasma with
X = 40.0 and Y = 4.0.
(a) self mode
(b) second stationary point

(c) third stationary point



90

This figure indicates that there are three beams
which guide the scattered energy. The magnitude of the
beam near 17° is wrong since the cold plasma theory used
here is invalid and a warm plasma theory has to be used.
Even with the warm plasma model the fields from this beam
will decrease as r_l, The other two beams are associated
with points of inflection and therefore, as was discussed’
in section 2.5 the fields will decrease as r—am which
makes these two beams very important for large distances. .

This work shows that there is a mode of propagation
which will guide the energy along the magnetic field. If
the same computations are made for incident rays inclined
to the magnetic field the same beams appear with
essentially the same values.

For p = 0 there is another stationary point given by
8 = 55°, The above discussion shows that the curves for
this wave have the same shape as Figure 3.7.2 and approx-
imately the same magnitude. Therefore that figure can be
used for this wave as well but now section b is the self
mode term. Thus the self mode term has a beam along the
magnetic field.

For the forward scatter case the spectrum is given by

- > ~
@(ks - ki) = &[kyg (ns - ni)ki] 3.7.5

where the s and i refer to stationary points only since

there is only one mode. If s = i, ¢ is a maximum and
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and equal to 1. Therefore the scattering cross section.-
depends only on the geometric factor and the mean sguare
value of the fluctuations but not on the correlation
length of the fluctuations. For the cross mode terms

(s # 1) the scattering cross section also depends very
strongly on the ratio of the correlation length to the
wavelength in the medium. Therefore the cross mode terms
depend upon the average size of the irregularities doing
the scattering.

The above discussion indicates that scattering from
irregularities may be a mechanism for guiding whistlers
along the field lines. A more accurate theory would have
to be used in order to obtain meaningful numbers for the
beam directions p = 0° and p = 7°. This theory would have
to account for the case of vanishing Gaussian curvature. by
using the third derivative of the refractive index surface’
in the derivation of the Green's dyadic. If results for
the beam at p = 17° are desired a warm plasma model must

be used.
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CHAPTER 1V

THE RADIQ.STAR PROBLEM

4.1 Introduction

The radio star .problem has:a.geometry.essentially the
same: as the forward .scatter-problem.considered: in Chapter
III, with an infinite slab replacing the scattering volume.
The. transmitter is located: far:. abeove .the .slab and the
~receiver is located far below the. slab so that-the signal
propagates through.the slab:-eof.irregularities.. .The longi=~
tudinal correlation of the electric field is- the gquantity
of interest in this chapter. In.this.problem.there is no
restriction on the size of the antenna beam for either the
transmitter or the receiver.

This type of problem occurs in the  reception of signals
from earth satellites or radio stars.on.the.surface of the
earth. It may also havemapplications»in laboratory plasma

diagnosis.

4,2 The Longitudinal Correlation.of.the _Eleetric.Field

The geometry for the radio star problem«isrshgwn in
figure 4.2.1. A transmitter T is located at .the origin
0 of the coordinate system. A characteristic . wave with a
group velocity in the diéectionwgﬂis»scattered»from a point
?ﬂand travels to the receiver R, located at ;, with a group
velocity in the direction R. -The- unscattered.electric field

has a group velocity in the direction ¥. The slab of
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Figure 4.2,1 The Yeometry: of.-the radio:.star problem

irregularities is bounded by.the coordinates.z = a and
z = a + b,
The scattered electric field:at.the .receiver:is given

by equation 2.2.6 as

=
&
(=23
o
-
Qs
=y
1o
[\
|—l

B(r) = _kz fax@. T (f[?? ..

Let the incident field be a characteristic wave given by

- -> - > ->
Ei (r) = Ao a; exp(—]ki . Y)/r 4.2,2

=
where A, is the amplitude of the. incident waveand"éi and ki
are the characteristic wave parameters associated with the

ray direction r. The asymptotic .Green's function is given

by equation 2.5.4 as
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- > - &> >
= * —l. e
T (F|F") =‘Z%_z d, a_ ag exp[.Jksr,‘r r')l
5 ks sec asvlcsl [;—;'l

After substituting these into equation 4.2.1

2 —)-* = > ->
> _ _ k3a ) dg(ag . M . aag

4n g
kS sec usv Csl

AX (F') exp.—j(ﬁi.f'+ﬁs.ﬁ)_

-).l
TR dr 4.2.3

Again this equation is-a .very ecomplicated .function of ;‘,
since the parameters:-.asseeciated 'with thei'characteristic
waves are functions of théurayudirectionsmﬂ Therefore some
approximation will:be:necessary.

Most . of the secattered: radiation 'will come from the
first Fresnel.zone. Therefore -if.the.:angular. width of the
first Fresnel- zone, measured at the transmitter and receiver,
is small, then .the:.wave:.parameters can be_.assumed to be
constant;with.res@ect‘tet%'winnequatien14;2-3-w.For an iso~
tropic medium. the radiusuef: the::£irst Fresnel zone is given
by re = YAZ .where-\.ig: the:wavelength.and .Z..is..the distance
to the plane containing the .scatterer. Therefore ' the
angular width of the first Fresnel zone is op = 2 tan ' VA/Z.
If the distance Z is large in terms of wavelengths, then ¢f
is small and the above: approximation is .valid, Mere will be

said about this later.
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If the above condition is met then ds' Ei, ES, ii' Ké’

and Cs are approximately independent of . Equation 4.2.3

then becomes

-5 2 +* M z z _)'l
B(F) = - KPo 7 dg (@7 - M. a)a,  AX(r?)
am o} 1
kS sec aSVICS r'rR
exp ~j(k} . ¥ +k, . R ar'  4.2.4

As is usual in problems of this type, remove the large
portion of the phase due to the direct path by dividing
equation 4.2.4 by E (¥) = A  exp (-jK; . ¥)/r. If this is

done the total received field ET(%) can be written as

> -> -+ >
ET(r) = Eo(r) [(1 + Fi) a; + Fs aS] 4,2.5
B, ()
where Fs = E;T?T" « In writing equation 4.2.5, the

scattered field is assumed to be composed of a single self-
scattered field and a single cross-scattered field. The
possibility of more than one saddle point that contributes
to the field is not taken into account. The inclusion of
this possibility is easy at this stage but its interference
effect is difficult to untangle later on.

Now consider

Fs = ASIS 4.2.6a
where
2 -> . = ->
k ds (aS . M . al)
A = = 4,.2,6b

s
4ﬂks sec as VICSI

and
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r

= ) a4 ¥ _
I, = f —  AX(r') exp -3 { k; (r'-r) cos a;

r'R
e B
+ kg, R cos as)} dx 4.2.6¢
. o -
= IS + JIS

where o is the angle between the propagation vector kX and
the ray path, and Iz and Ii are the respéctive real and
imaginary parts of Is,

The quantities of interest here are the in phase and
quadriture phase components of F. These gquantities are just
the log amplitude and phase departure of the wave if the
background medium is isotropic. Equation 4.2.6a can be
separated into an in phase component Fg and a quadriture

phase component Fg, These are given by

b As Ig AS real 4,2.7a
P = s
s . i . .
jAS IS As imaginary
q AS I; AS real
Fi = ‘
. Ny . .
jAS Is AS imaginary 4,2.7b

since Aswis either real or imaginary as dS is real or imaginary.
The correlations among FP and FY can now be expressed as

correlations among the integrals ISe The correlation of FP is

[ r,~
As A <Is(r?

t 1

. r >
~jA_ A* <I_(r,) I
<FPEHFRE)>= 4 T
]AS At <Is(r1) I

* iz
LAy A} <Ij(r)) I

) Ii(‘r’zp
T E )
2 4.2,.8a

o K oo

(r )>
2

(r )>
2

of b
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where one of the alternatives is chosen depending upon

whether, AS and A,_ are both real, és is real and At is

t

imaginary, A is imaginary and A_ is real or Ag and A,_ are

t t
both imaginary. ;1 and ?2 are the locations of the two

receivers. It is implicitly assumed that %1 and ;2 are not
& -> -
too far apart so that As(ri) and As(rz) can be assumed to

be equal. The correlation of FL ig

i, > i~
A AL <Is(r1) It(r2)>

N N jag, Af <Ii (¥ ) Ii(; ) >
<F§(r1)F%(r2)> = L 2 4.2.8b

. > i,
—jAs At <T (rl) It(r2)>

n K

*

As At <I

n B

b r >
(rl) It(r2)>

The cross correlation between FP and Fq is

r > i,
Al AL <IS(r1) It(r2)>
. r > r >
-JA_ A¥ I (r ) I _(xr )>
<F§(El) F%(§2)> = s Tt st Tt 4.2.8c
Ja_ a, <It(x ) 1i(x )>
s Tt s 1 t a2
\A A*

s 8t <xi(r) X )>
s 1 < 2
The fact that these integrals are expressible in terms of

four integrals is obvious. Define these integrals as

' = <1f (F) 1f (F)> 4.2.9a
1 S 1 F 2

' =<1t () 1* (¥ ) 4.2.9b
2 ? 1 t 2

' = <1+ (¢ ) ¥ (% )> 4.2.9c
3 S 1 't'l 2

I = <1§ (?1) It (?2)> 4.2.9d
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Using equation 4.2.6c

r
r, > - 1 s *a
Is(rl) J ET§1 AX(rl) cos(Tl) dr1 4.2.10a
@y == 21 ax@) sin(r ) ar 4.2.10b
s rl = ETﬁl rl sin . rl v doa
where
— |
'I‘1 = ki(r1 rl) cos oy + ksR1 cos ag 4,2,10c

Substituting these into equation 4.2.9a, it becomes.

. Jf rlrz A +')A iy d+'d+'
I = —r—f— <AX(r X os T cos T
1 rlrzRIR2 ( 1 (rz) c 1 2 r1 r2

>
As in Chapter III, assume <AX(;1)AX(;2)>= <(AXV$B(;;—r;).

Thus

rr
r_ <(AX)2> ‘ 12 T o
I,= 2 r;r;RleB(¥z r1) cos (T; Tz)

+ cos(T + T ) ]d?*d?' 4.2.11a
1 2 1 2

Similarly

rr
' <(AX)2> j[ 12 S A [ -
12— 3 ET?:ﬁ;ﬁzB(rz rl) cos (T1 Tz)

- cos(T + Tz) ]d?;df; 4.2.11b
rr
! <(AX)2> JJ 12 Ty T [ :
= 2188 U - T ~T
13 > rlrleR B(r2 rl) sin ( . 2)

+ sin (T + T ﬂ azr1ae 4.2.11c
1 2 1 2
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rr

/< (AX) 2> 12 e Ty e -
Iq“ 2 r'r'R R B(r2 r1) sin (Ti Tz>
1 2 1 2
- sin (T + T ﬂ ar'ar! 4.2.114
1 2 1 2

These equations can be expressed in terms of two fundamental

integrals

rr, T

= ffr'r'R R B(F'-F') exp j (T -T )| dr'dr’ 4.2.12a
1721 2 2 1 1 2] 12
rr

172 _

Iz= JJr'r'R R %(f'-f') exp j (T +T ) dE*d;' 4.2.12b

172 1 2 2 1 1 2] 12

Therefore equations 4.2.11] can be written as

I'= <(0x) %> (If + IZ)/Z 4.2.13a
I'= <(8%) 2> (If - If)/2 4,2.13b
= -<(Ax>2>(1f + Ii)/2 4.2.13c
I'= <(ax) %> (I? - ;i)/z 4.2.13d

The problem is therefore reduced to the solution of the two
integrals I1 and I2 .

Now consider the distances r, r', and R involved in
equations 4.2.12. In general correlations transw¥erse to the
z axis lead to egquations which are very complicated and
therefore they will not be included. 1If the scattered mode
is the samefas.the incident mode transverse correlations are

possible but the mathematics is similar to the isotropic case
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and so it will be discussed in section 4.3. From now on it
will be assumed that the two receivers are situated on the
z-axls (see Fig. 4.2.1). Correlations from these two re-
ceivers are sometimes referfed to as longitudinal corre-
lations. Therefore assume that r is given by z + Z where
z>>Z, The distance r' is given by (x'? + y'2 + z'2)¥2, 1he
Fresnel approximation (Chernov, 1960, section 18) can be
applied to this because z' is given by a plus some distance
in the slab, and this distance together with x' and y' are

much smaller than a by a previous assumption. Thus

r! ZIZ [l + (X!2+y'2)/2]1ﬂ

R

r' z' + (x'%+ y'2)/22" 4,2,14

The same approximation can-be used on the distance R since
the same statement can be made about c¢ as was made about a

(see Fig. 4.2.1). Thus

]lﬁ

R [(z + 2 - 2'")2%+ xt24 yt2

Il

R

R

2 + z - z' + (x'2+y'2)/2(z - z') 4.2.15

With these equations the phase T can be put into a

simpler form.

| - ‘ o~ - - [
ki(r r)cos oy + ks R cos as (kscosocS kicosai)(Z+z z')

x32+ YHZ
2z' (z-z') /z

o : D
+ [kicosai + (kscosas kicos ai) z /z]

Define
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6 = ks COS Ois - ki COS ui 402'16
- ]

P = ki cos o, + §z'/z 4,2.17

g = z2'(z - 2')/z 4,2.19

With these definitions

T = k; (r'-r) cos a;, + R cos a_ = P(x'2+y'2) /27 + 0

The distances which appear in the amplitude portion of
equation 4.2.6c can be approximated by the largest part of

the approximations given here. Thus
r/r'R = z/z' (z-2') = 1/¢ 4.2.21

Using these approximate relations, equations 4.2.12

can be written as

> >
B(r'-r'") - -
I = 2 ! exp j (T - T ) dr' dr’ 4.2,.22a
1 —‘Z“"‘E‘"“‘ 01 2 1 2
172 '
B(;'-;l)‘ > -
I = f[ 2 l7%xp § (T + T ) dr' dr' 4.2,22b
2 T — 1 2 1 2
Clgz

where T is given by equation 4.2.20. These integrals are’
best evaluated in the coordinate systems called relative and
center of mass coordinates. The details of this transforma-
tion are given in appendix A3. Equations 4.2.22 can be

written ag - ‘
I = B(r') exp i1 5P, ;L?Z (u'~€_)2+(B'—e-)2]
1 [ 2C ¢ X y
172 12
PP
12

(x' 24y'?)+Q -0 }do’ap’dy.' dr’

- 2(; b ""C P ) 492.238.
2 1 1 2
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B(r') L2P1+C1Pz +4y 2 2

= O S S i e

I -fj; c exp J | zclcz [(a €7) “+ (B ey) ]

P1P2 4.2,23b

+ (x'2+y'?) +Q1+Q2} da'dg'dy'dr’

2(¢ P +¢ P)
271 71 2

The o' and B' integrals of I1 and I2 have the form

H
n

f exp[ JH (x- af] dx
2 j exp j HE? df

0
From Dwight (1961) edquation 858.560

I= V720 (1+3) 4.2.24

Using equation 4.2.24, I and I can be written as

B(r')
Pipz 12 12
I =321 |rp=gp o | 3[ T v ey XY )
2 1 1 2 . 2 1 2
.
+Q1—Q2]}dy'dr' 4.2.25a

B(;') PIPZ § 2 42
I2 = ] ZWJJE~§—:E—§— exp‘{ J[ A P)(X +y*© “)
-2 1 3 2 2 1 1 2
+Q1+Q2]}dy'd?' 4.2.25b

Further integration of equations 4.2.25 requires a
knowledge of the correlation function for the fluctuations.
In a magneto-plasma such as the ionosphere this correlation
function is observed to be anisotropic, in that the corre-~
lation length along the magnetic field is different from

the correlation length transverse to it. Since the magnetic
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field can make an arbitrary angle with the plane of the slab,

this correlation function will be very complicated function
of the relative cobrdinates, the correlation lengths and the
geometry. This complicates the integration so much that a
closed form solution for the z related integrals does not
seem possible unless a very restrictive assumption is made.
For this reason a much simpler correlation function will be
used. The correlation function will be assumed to be an
isotropic Gaussian correlation function with correlation
length 2. That is
B(Y') = exp - (x'2+y!2+z2'2) /02 4.2.26

As required by the reasons given in Chapter III, we assume
2<<b,

With this correlation function the x' and y' integra-

tions of equations 4.2.25 have the form

I = J exp[*(l/?»2 +jH)x2] dx

-

From Chernov (1960) the footnote on page 101,

I = /n/(1/4%+3H)

Using this result in equations 4.2.25, I1 and I2 become

- 2 2, 4 —
j4ﬂ2[fexP[ 2! /2'+J(Q1 Qz)]

= ] v
= TP DY /r e e 92’ dY 4.2.27a
21 12 1 2
o, exp[-2'2/2%+5 (Q,+Q,) ] o
1, = dm [fz(; 77 P /=55 942'dY 4.2.27b
2 1 71 2 12
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Now consider the case when t#s. If t#s then t=i and
therefore from equation 4.2.18 Q2 = 0, since 62 =0. There-
fore the phase portion with respect to y' of equations 4.2.27
is just exp(—jéy').' The rest of the integrals is a com-
plicated function of y'. This function will be slowly
varying compared to the phase term above because a< y'< a+b
where a is large compared to b. Therefore as a first
approximation the y' integration becomes

a+b
j exp(=jdy')dy ' = b expl[-j§(a+tb/2)] €in(8b/2)/(8b/2)
a

If the differential phase across the slab 6b is large this
integral is negligibly small. For the cases of interest here
this will be true and therefore t#¥s gives a result which is
very small compared to the case t = s. This implies that
the scattered self mode and cross mode are weakly correlated’
if the differential phase shift across the slab is large.
Therefore in the work that follows we restrict ourselves to
the case t = s.

P, Q, and ¢ in 4.2.27 are functions of z' and v'. The
calculation of the explicit dependence on z' and y' of the
various terms in equations 4.2.27 are carried out in

appendix A3. Equation A3.12 gives
- - . . - § - 3 2 25,82 2 H
;ZP1 cle [klcosal (1-2v'/2z) (yt#°/z°=2*“/42°) ]z
In this equation a <y' < a+b and -b < z' < b. Because of

the weighting factor exp(-z'?2/%22%), the integration with
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respect to z' is expected to come mainly from Iz'[fz<<a.
Hence, z'/2 can be ignored when compared to y'. Therefore

the above equation can be approximated by

;2P1—§1P2= [kicos di (1=2v'/2) ~§({y'/z)2]z" 4.2.28
Equation A3.13 gives

P +z P = 2z{k;cos a; [yVz -(y'/2)%-(z' /22)?]

+6 (l-v/z) [(y'/2)2-(2'/42)2%]}
If z'/2 is ignored compared to Y', this equation becomes

x 1 -V /oY
C2P1+C1P2- Z(kicosai + 8y'/z) (1~ y'/z)y' 4.2.29

Equation A3.14 gives

.+ Sy'/z)2%=82(z'/22)2

P1P2= (kicos oy

which can be approximated by
o e ! 2
P1P2 (kjcos a, + &v'/z) 4.2.30

Also from appendix A3 equations 10 and 11

Q1 - Q2 = §(z' + 22) 4.2.31
Q +9 = 28 (z- v') 4,2.32
Equations 4.2.27 can then be written as
a+b b
I = jaw? exp(j2637) j J
a -b

4.2.33a
exp (-z'%/8% + 468z') dz'dy!

21K cos0; (1-27'/2) = 8(v'/2) 2127 /%% + 3 (K cosa, +0y'/2)?

a+b b
12 = j4m? exp(j268z) [ I
a -b

exp -(z!2/8% + j28y') dz'dy' 4,2.33b

(kicosui+éyf/z)4y'(luy‘/z)/l‘-j(kicosai+6y'/z)‘
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Next consider the integration over z! in equations
4.2.33, The z' integrations of these equations can be
extended to +* since b>>%, that is the slab is thick in
terms of correlation lengths. Therefore the z' integration

of I1 has the form

exp - (z'2/8%2-38z")
f (2p/0) (2 /%) + 392 %

e OO
Complete the square on z'

exp - (z'/8-388/2)2

i
z7/% +3%q2/2p dz

I = (2/2p) exp L%zé/Z)ZJJ

Now transform the coordinate to & = z2'/% - Jj§/2 to get

©-j86/2

_ - exp (~£?)
I = (22/2p) exp[ (25/2)% J T v ag

—o=326/2
where
v = 2(q®/p + §)/2
In order to put this equation into the form desired sub-

stitute - for & to get

©+3L8/2
I=- (£2/2p) exp| - (26/2)2] f 9%2:1%%_L dg
-0}+§88,2

If the pole of the integrand does not lie between j&§/2 and

the real axis, the path of integration can be deformed to
© ©o+528/2

+ f + since no singularities will be

=0 Y 2 =0

- OO

(=]
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crossed. That this is possible for all cases is shown in

appendix A4, At real &= 4+ the integrand is zero, so two

of the integrals are zero and I becomes

e

I =-(22/2p) expl~(26/2)?] f exp (-E%) 4
o 5TIV

=—(/T.2/2p) expl-(L8/2)21 P(3v)

where P (Z) is the plasma disperson function defiined by Fried

and Conte (l96l1). The plasma dispersion function is related

to the error function. From equation 4.2.33a

’ ¥ 2.
(ki cosa, +8v'/z)

B = * ya + ‘2. 4
v = % [ ki coso, (l*2y'/z) - 8§y /2) 6} 4.2:34a
Thus
5/2

I = j2m - 2% exp - [(&8/2)%-3282)
atb o (kjcosa; +8y'/z) ?

J P{3 7[Eicosai(l-2y'/z) -6(Y'/z)2+ 6]} 4.2.34b

dy’
a

k. coso, (1-2y'/z) - &(y'/z)?

The integration over z' in I2 is very simple since only the

exponential is a function of z'. Therefore from Dwight

(1961) equation 860.11

I = j4n%2y exp (3268z)

4,2.34c
b exp (-j26v")

(kicosoci + Sy'/2) (dy7/2°) (l=v ' /2) ~7j(kicosui+ﬁy'/z)‘ dy!

a

The remaining integrals are those over the thickness of

the slab for the center of mass coordinate y'. As is usual
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in this type of problem they are complicated functions of
vy' and therefore a further approximation is necessary.
Numerical integration of these equations .is possible but
that is too specialized.

If the slab is very thin compared to the distances from
the transmitter a and from the receiver c then y' is approx-
imately constant in the magnitude portions of the integrals.
This thin slab model is the usual approximation made to
simplify the final integration. Therefore assume that
y'= ¥ = a +b/2 in the amplitude terms of equations 4.2.34.

From Fried and Conte (1961) the plasma dispersion

function for a purely imaginary argument can be written as
P(jy) = j V7 exp (y?) erfc (y)
where erfc (y) is the complementary error function of y and
y is real,
Thus I1 can be written as

. \ exp (V?) erfc (V)
I1 = 27°2°b exp[-R §¥2) ]kicosui(l—2V7z)—6(v/z)‘ exp(j2682)

4,2.35
where
>~ 2
- L [ (ki cosa, + 8y/z) .\ 6]
2 b k; cosa, (I-2¥/z) - S (¥/2) 2
I can be written as
2 a+b

j4nS2 9 exp (j262)

= . ‘ '

2 (kicosui+67/z)(47/£4)(l-?/z)—j(kicosai+sy/z)<% j28y*' dy
a
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341 ¥20b exp[§26 (z-) ]
(k cosa, +87/z) (4Y/%7) (1-¥/2) -] (kicosai +3y/z) ?

sin &b
b

Now consider sin(db)/6b. dJdb is the differential phase be-
tween the incident mode and the other mode of the plasma
across the slab. This phase shift was assumed to be large
when discussing the correlation between two different
scattered modes. Therefore if s#i, I is very small. An
examination of equation 4.2.35 shows that unless the differ-
ential phase shift in a correlation length 82 is large , I

has an appreciable value for the case s#i. Thus

47200 1
D(Y)-3

= kiécosgai 6s,i 4,.2.36

where GS i is the Kronecker delta and D(Yy) = 4% (z-Y)/L2z ki Coso;
7

is the dimensionless wave parameter used by other authors
(Chernov, 1960).
Now the correlations among Fsp and qu can be obtained.

Combining equations 4.2.8, 9, and 13 these correlations be-

come
P =z P (Z = 2 M r 2. ]
<Fg () Fg (r)> <(ax) *>|a_]| I,(2) + dSIzd/z )
4.2.37a
a (T yp9 (= = N2 of ¥ 2T
< = -
Fo (£)Fg (r2)> < (AX)> | As'_Il(Z) d512‘£?2337b
P2 yed (2 = 2 i 2 1]
< > = < -
Pg (z)F3 (X)) (AX)2>| ASF_II(Z) dSIzJ£?2,37C
‘As 2 is given by (see equation 4.2.4b)
y % = >
A ko (as L M e ai)
- Z ya Z
s|  Iem” kZ sec”ag |Cs|
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If the refractive index surface is convex to the ray vector,
ds is real and if the surface is concave to the ray vector,

dg is imaginary. From equation 4.2.35

exp (V?) erfc (V)

= 3 -
I,(2) = 21°2%b exp(-(26/2)7] K cosa,; (1-27/2)-8 (Y/2)
[cos (282) + 3§ sin (282)] 4,2.3%9a
where
Y (k;cos +6y/2) 2 L s
vEgzg k cosa, (1-2Y/z) -8 (y/z) *

From equation 4.2.36

D(Y)
=57 Ss,i 4,2.39b

where
D (¥) = 4?(2-?)/222kicosai.
Eqﬁations 4,2.37, 38 and 39 comprise the results of this
section. They will be discussed in detail in the next

section.

4,3 Discussion of the Results

First consider the factor exp [-(&68/2)?] which appears
in equation 4.2.39a. It can be expressed as
exp [-(28/2)2%] = exp [wﬂz(nscosas -nicosai)zlz/Az]
4.3.1
where A is the free space wave length. If (nscosasmnicosai)
is very small, (3: « M . Ei) will also be small (see the

discussion in connection with figure 3.4.3), and therefore
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(nscosas —(nicosai) will have some appreciable value if
cross-mode scattering is significant. If this is the case,
equation 4.3.1 shows that cross-mode scattering is highly
dependent upon the differential phase shift in one corre-
lation length &2.

If the differential phase shift in a correlation length
is large, equation 4.2.39a can be simplified. The above
discussion shows that fér this case I1 is negligibly small
unless s = i, and therefore there is no cross-mode
scattering. A further consequence of this is that since I1
depends upon 6Z, the fields are correlated in the z direction
if § is zero and therefore equations 4.2.37 reduce to equa-

tions for the mean square values. If § = 0

4m¥%0b . -, N
I, = 25575 YT v exp(v?) erfc (V) 4.3.2
i i
where v = [ﬂznicosai/(z-ZV)] (2/X). In the case being

considered here v>>1 and from Abramowitz and Stegun (1964)
equation 7.1.23
/T v exp (V2) erfc (¥) ~v 1 ¥ o> oo
Therefore for 2/A>>1
I = 4w5Q2b/k§ coszoci
If the refractive index surfaces are ellipses, di is real.

Combining equations 4.2.37, 38, 39b and 4.3.3
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<(AX)®>vm k% b, _ 1
<(F?)2> = n 0 (ai§aMmai)2[l b "—'_-;—'-’:'-] 4.3&43
gn; || 1+D° (¥)
<(AX) 2>/m k2 b _ 1
<(Fd) 2> = - 2 (E;,M;Zi)z[l + I:B;};}] 4.3.4b
8nt |c, |
<(AX) 2>vT k2 #b . D (Y)
(FEFE)>= ° (gf.ﬁ,ai)z —— 4,3,4c
en, |c;| 1 + D?(¥)

Equations 4.3.4 a and b. compare favorably with the
equations for the log amplitude <S?> and the phase departure
<Q?%> of Yeh and Liu (1967) and reduce to the same values for
an isotropic medium.

Two special cases can be considered here. If D>>1

equations 4.3.4 reduce to

2 2 —
<(FP) %> = < () 2= <(BX)TVTRO 4D 2y F oo 2 4.3.5a
1 1 " 1 1l
8ni lCil
<(X)*>Vm kb _ 1
<FE F(anh>= (ai*.Mea.i)z "’""‘":'_' 4.3-5b
8n; |c,| D(Y)

Here in phase and quadriture phase components have the same

mean square value. If D<<1l equations 4.3.4 become

< (AX) ?2>/T k22b
<(F§)2> = 0

ol I, | (Z§@ﬁ,3i)2 D2 (¥) 4.3.6a
<(AX) %3>V/T k2 _
<@Fh) 2> = 0 (Egaﬁgéi)z 4,3.6b

4
4ni ICiI
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‘ < (AX) 2>V kgzb R
<F§ F(i:I> = - (a
snt |c,|
1 1

lMc-g.")z D(Y) 4.3;60’

In this case the correlation of the out of phase fields is
much greater than the correlation of the in phase fields.

In order to see the variation of equations 4.2.37 as a
function of B, the angle the magnetic field makes with the
unscattered ray path, consider the plasma shown in figure
4.3.1., 1In this case X = 0.25 and Y = 0.15 were chosen to corre-
spond to the earth's ionosphere in the F region at approximately
10 Mhz. Choose the geometry such that a = 450 km, b. = .50 km
and © = 500 km. The mean square fluctuation of X is given
by [<(AXP>/X%1Y2 = 0.01. In order to have cross mode
scattering the correlation length must be approximately equal
to the freespace wavelength, therefore chose 2 = 30 m. If %
is very large the previous discussion  shows that the amplitude
of the self mode terms will be increased but there will be
no cross-mode scattering. Using the above values D= 6000
which is the first case considered above, therefore <F§2> =
<§§2>. Figure 4.3.2 shows these mean square values. The
self-mode terms are shown in sections a and d and are
similar in shape to the curves for small X and ¥ discussed
in. Chapter 3. The ordinary mode increases as the magnetic
field becomes perpendiculdr to the ray path, while the
extraordinary mode does just the opposite. The cross-mode
terms are shown in sections b and c¢. They have a narrow

range peaking near 80 degrees and an amplitude which is
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Figure 4.3.1 The refractive index and Gaussian curvature
for X = 0.25 and ¥ = 0.15.
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Figure 4.3.2 The mean square values of F for X = 0.25 and
Y = 0.15 with [<(AX)?>/X%]1%2= 0,01, a = 450 km,
b 50 km and C = 500 km for a frequency of 10 Mhz.
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about two orders of magnitude less than the .self-mode term.

<F§ Fg> has a value only for the self-mode terms (see
equations 4.2.37 and 39b) in this case because I is real
for Z = 0. The shape of the curves are the same as the
self-mode curves of figure 4.3.2 (sections a and d). The
amplitudes are about four orders of magnitude less than
<(F§)2> and therefore much less than the cross-mode terms
for most of B. They are also negatively correlated.

Equation 4.2.3%9a shows that the correlation distance
of the amplitude is determined by § = kscosocs - kigosai.

This shows that ¢ could be determined by measuring the verti-
cal correlation function of the cross-mode scattered fields.
Thus since this term could be measured experimentally, it
could be used to obtain information about the plasma in
which the scattering occurs. If this is used the require-
ment that 2/X = 1 must be met or there is no appreciable
cross-mode scattering.

When the scattered wave is the same as the incident wave
the solution is essentially the same as that for an isotropic
medium. Therefore for this case transverse correlation is
possible. Since the solution is essentially isotropic the
transverse correlation will be the same as that determined
by Chernov (1960) or Yeh (1962) multiplied by a factor which
accounts for the conditions considered here. Comparing
equations 403e4 with equations 26 and 27 of Yeh and Liu (1967)
this factor is (Efeﬁeai)?ni |Ci| . The different parts of this

factor are discussed in Chapter III.
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4.4 The Approximations for the Slab Case

In section 3.6, the variation of the parameters associa-
ted with a characteristic wave were required to be small as
the ray directions ranged over the scattering volume V. 1In
the slab case the variation over the scattering volume is
replaced by the variation of these parameters over the first
Fresnel =zone.

The first Fresnel zone is given by the requirement that
the change in phase when going from the center to the edge
of the first Fresnel zone is 1 radians. Thus

k(¥)r cos a(r) - k(;o) r, cos aC?O) =T 4.4.1
The radius of the Fresnel zone re is perpendicular to fo and
small; therefore r can be approximated by

o~ 2
r o= + rf/2rO 4.4,.2

Since the variation if k over the first Fresnel zone is
small, expand k(;) cosa (r) as a Taylor's series to the first

3o
order about ry e Thus 4,4.3

k(¥) cos a(r) = k(fo) cos o (;O) + (§va)[k(§) COS&(;)]r=r

Thus equation 4.4.1 can be approximated by

k(z) coso(r )(rZ/2r )+ (¥ V) [k(¥) cosa (T)]___
0

(r, + r%/Zro) =T 4.4.4

Now consider the factor (;f°V)[k(§)cosd (;)]r=rf° Both
, 0
k(?) and cos d(r) are functions of the ray angle P and there-

fore

“V p(F)] =2 [k(p)cos alP)] 4.4.5

(§f~V)[k(§)cosu(?)] = (r =

£

0
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Using equation 2.7.3

%5 [k(p) cos afp)] = —k(g) sin a(;) 4.4.6

p is given by the equation cos p = B,"r. From this equation
Vp = —(Bo—cosp r)/r sin p 4.4,7

Therefore since r.-r = 0
Fol Sin Oir, B -3

o} rf

(ff-V)[k(f) cos a(?)]r=r =

in p(r.)
o r, sin o (r,

B . i dicular to ¥ , B _*r. = sin p(r )
ecause rf 18 perpen icular To ro, o rf = 8sin p ro rf,
Thus

(re-9) [k(F) cos a(¥)],_. =k(¥,)) sin a(¥)) r/r 4.4.8

o
Using equation 4.4.8, equation 4.4.4 becomes
-> -+ 2 > . <> _
k(ro) cos[a(ro)]r /2rO + k(ro) sin [a(ro)]rf- m™ 4.4.9
where the term k sin(u)rf3/2rg has been ignored in comparison
with k sin(w) Teo This equation can be reduced to
2 = - =z > =
re + 2 tan[a(ro)] r re A ro/ n(ro)cos a(ro) 0
which has the solution

" 4;4.10
an a(ro)

2
0

re =r, tan a(;o) +/&ro/n(?o)cosa(fo) + r
If the medium is isotropic a = 0 and so r; = /7?;7H'which is
the radius of the first Fresnel zone for a wavelength in the
medium of A/n.

From section 3.6 equation 3.6.2 the change in ray

direction Ap represented by the first Fresnel zone is there-

fore

tan(Ap)= tan o + /&/ron(go)cos u(?o) + tanza(fo) 4,4.11
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For small values of X and Y (especially Y) tan o is small

but because of the assumption of far fields A/rO is also a
small number, and therefore the tan o term is significant.
For larger values of o, tan o will dominate and Ap=2a, inde-
pendent of r,-

To illustrate the above points, the plasma considered
in the previous section (X = 0.25, ¥ = 0,15, frequency =
10 M hz) will be considered. At p=0 and 7/2, oa=0 and there-
fore tanl[Ap (0)] =/77§;HTET , which gives the value of Ap =
0.34° in this case. This is the minimum angular width of the
first Fresnel zone. At p= 7/4, o = 1° which gives a value
of Ap = 2.11° from equation 4.4,11. This shows that there is
almost an order of magnitude change in Ap due to the anis-
otropy of the medium.

Once Ap has been determined from equation 4.4.1l1 the rest
of section 3.6 can be used to determine the degree of error
introduced by using the technique described here,

The approximation introduced here is a lot more res-
trictive than those in Chapter 3. The reason for this is
that as X and Y are increased, the size of the first Fresnel
zone is dominated by o the angle between the group velocity
and phase velocity. The range of o generally increases with
X and Y but so does the variation of the parameters. 1In
other words as X and Y increase, both the angular size of
the first Fresnel zone and the change of characteristic

parameters per unit angle increase simultaneously which is
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the worst condition to have occur. This shows that there
should be limiting values of X and Y except for transverse
and longitudinal propagation for which o = 0 if the mode

propagates.
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CHAPTER V
CONCLUSIONS

5.1 Discussion

In general there are two principle conclusions that
can be drawn from this work. The first deals with the
appearance in the scattered field of modes different from
the incident mode. Two factors determine the degree of
cross mode scattering. The first is the product of the
differential refractive index (nscosocS —nicosai) with the
ratio of the correlation length to the free space wavelength
Q/Ao. Since a wave cannot reveal structures much:smaller
than a wavelength (Ratcliffe, 1956, section 2.4), Q/AO will
be equal to or greater than one. In general the differential
refractive index will be significant since if it is

> = >
small,as-M-a.

i will be very small and there will be no

cross mode scattering. Therefore cross mode scattering is
caused by irregularities whose correlation length is of the
order of a wavelength. If n cosa is greater than n,cosa,
there is one way in which' any irregularity can cause cross
mode scattering. As the wave approaches the reflection
point of the s mode ng will\go to zero. Therefore near this
point the differential refractive index will be zero and this
factor will be a maximum for any R/AO. The other factor is
g;aﬁ’gi, This factor is real and its magnitude depends upon
the degree to which a differs from a circular polarization.

Therefore this factor is small unless the medium is signif-

. . - . s . . . . s o . -
icantly anisotropic. For an isotropic¢ medium aSaMoai is zero.
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The other conclusion that can be drawn is that due to
the factor ;;-ﬁ°gi the variations due to different geometries
can be guite significant. The degree of variation depends
upon the degree of anisotropy, especially when determined by
the parameter Y. The variation is generally much less for
the self mode terms than for the cross mode terms.

From the standpoint of the restrictiveness of the
approximations required, the bistatic geometry is more
versatile than the radio star geometry. This is true because
the scattering volume is controlled by the experiment in the
bistatic case while the effective scattering volume is con-
trolled by the background medium in the radio star case.

Also in the radio star problem the effective scattering
volume as well as the rate of change of the parameters in-
creases as the medium becomes highly anisotropic. This is

a very restrictive situation to have occur.

5.2 Future Work

Some areas for future work have already been suggested
but they will be repeated here. A better asymptotic Green's
function should be developed to account for vanishing
Gaussian curvature at points of inflection. This would be
very useful because the beams which result from points of
inflection decrease slower with distance than regular fields
do. An attempt could be made to use a warm plasma theory to
get better results near asymptotes. Because of the flat

nature of the refractive index in these regions beams will
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be generated and therefore this extension would be useful.
The solution might be formulated in terms of linearly
polarized waves to obtain some more information about
Faraday rotation. An attempt might also be made to apply
some of the technigques of multiple scattering. Finally the
phase approximation might be improved by using a Taylor's
series expansion of the wave number. The results of this
look very complicated and so this may not be a useful exten-

sion.
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APPENDIX Al

THE CHARACTERISTIC FIELD g IN A GENERAL' COORDINATE SYSTEM

The basic expressionS‘for‘g are given in Chapter II,
section 6 and they are repeated here. " In the coordinate

system shown in Figure Al.l

D
(&)

Figure Al.l - Special coordinate system for a.

> . X
a is given by

1
a = [R, 1, RQ] Al.1l
[l+lRl2]1/2

where R and Q are given by equations 2.6.4b and 2.6.4c.
vector is to be transformed into a coordinate system

shown in Figure Al.2.

ray

Figure Al.2 General coordinate system for a.

This
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This is just a rotation about the x"+=axis through an
angle 6 and then a rotation about the  z'-axis through an
angle y + 90. The form of the first rotation can be

determined from Figure Al.3.

Figure Al.3 The rotation about x.

It is
1 0 0
=1 0 cos 6 =-sin 6 | r"™ Al.2
0 sin 6 cos 6

The form of the rotation about the new 2z axis can be

determined from Figure Al.4. It is

Figure Al.4 The rotation about z.
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%

-sin ¥y -cos Y 0
- . -
r = cos Y =sin ¥y 0 o-rt Al.3
0 0 1

Therefore from equatidons Al.2 and Al.3 the total rotation

can be written as

[ -siny -cosy 0 | 1 0 0
-> R R . ->
r = cos Y -sin v 0O -0 cos O -sin 6 « "

0 0 1 -0 sin © cos ©
[ -sin y -cos 6 cos'y sin 6 cos ¥y
N N N ->
= cos Y -cos 6 sin-y sin 8 sin vy « "
| 0 sin 6 cos ©

Thus the characteristic field 3 in the coordinate of

Figure Al.2 becomes

-sin y =~cos 6 cos Yy sin 6 cos ¥y R
e 1 . .- .
a = I ]2 75 cos Yy -cos € sin y sin 6 sin'y} ¢ 1
[1+|R|“]
2 0 gsin 8 cos © , - RQ
[ R(Q sin 6 cos Y - sin y) - cos 6 cos ¥y
1
= R(Q sin 6 sin v + cos y) - cos 6 sin vy
1/
INEERE
i RO cos 6 + sin 6

Al.4
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APPENDIX A2

POLAR PLOTS OF G; FOR A PLASMA WITH X = 0.2 AND Y = 0.4

Figures A2.1 - A2.4 are polar plots of the geometric

factor Gi for a plasma with X = 0.2 and Y 0.4. The
geometric factor is plotted as a function of ¢s the angle
the scattered ray makes with the magnetic field in the
plane defined by the magnetic field and the incident ray.
The two self mode terms are plotted for 0° < ¢s < 180°.
The two cross mode terms are plotted for 180° < ¢s < 360°
and are ten times larger than they actually are. In
Figure A2.1 the incident ray is along the magnetic field.
In Figure A2.2 the incident ray makes an angle of 30° with
the magnetic field. In Figure A2.3 the incident ray is

inclined to Bo with an angle of 60°. In Figure A2.4 the.

incident ray and the magnetic field are perpendicular.
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Figure A2.1 The geometric factor versus the scattered ray
angle for an incident ray angle of 0%

90°
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Figure A2.2 The geometric factor wversus the scattered ray
angle for an incident ray angle of 30°.
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Figure A2.4 The geometric factor versus the scattered ray
angle for an incident ray angle of 90°.
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APPENDIX A3

THE TRANSFORMATION OF T1-~T2 and T1+T2

INTO RELATIVE AND CENTER OF MASS COORDINATES

The relative coordinates are defined by

LIRS e b LI S LI R
X X=X y Y,"Y, z z -z
The center of mass coordinates are
LI s | L R 1 = Sl
20, x2+x1 28 y2 y1 2y Zz+21
In these coordinates ;; is given by
x; = o'-x"/2 y; = B'-y'/2 z; = y'-z'/2
-
and r; by
x; = o'+x'/2 y; = Bi+y'/2 z; = y'+z'/2
Now
- = 12,82y - V2,0
Tl Tz (Pl/zcl)(xl Y, ) Ql (Pz/zcz)(xz Y,

Consider the terms

12 12 : LI | 2
(P1/2c1)x1 (P2/2{:_2)x2 (l/%ﬁ(Py/cl)(a x7/2)

=

2t

1

¢ P -=-CP
2 1 "1 2

CZ

] H 2
- (Pz/cz)(a +x'/2) 7]

L P +C P x'?
a'? - 2.1 12 grgvop
-z P
CZPI C1 2 4

)

Complete the square on a' and collect terms.

2 2 ”CZPI_EIPZ 2 PIPZ

(P /27 )x'*=(P /27 )x'? = &2 2 (a'-c])* X

1 1’ 2777277 2 ¢ 2 2P -z P)

1 2 2 1 1 2
A3.6
P +g P P+ P
ST, xt . Let g ety , then
2

A3.,1

A3.2

A3.3

A3.4

5y -0

A3.5

P -CcP z P -z P 2
2 1 1 2 2 1 1 2

2
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equation A3.5 can be reduced to

TI*T2= CZPI—c1P2 [ (d'—S;)2+ (31“8;)2 ]
ZCICZ

PP
_ 1 2 (X|2+ya2) + Q -0 A3.7
2(z P -z P ) o2
2 1 1 2

Now consider 'I‘1+T2

T 4T = (P /27 ) (x'2%+y™ + Q +(P /27 )(x'%+Y'2) + @ A3.8
1 2 1 1 1 1 1 2 2 2 2 2
This is just equation A3.5 with P2 replaced by —P2 and Qi

replaced by —Q2° Therefore from equation A3.7

P+ P + +
T +7 = -2.L.1.2 [ (a'-e )2+ (B'-¢ )2]
T2 2r ¢ v
1 2
P
—2 12 |2) + + A3.9
*o2(ge +pp) XTHY Q +Q, .
2 1 1 2
P -C P x! P -r P 1
where ¢t = E.?..__.l___c_l__.?. — and et = C2 1 C1 2 X__.

TP+ P 2 Y P4z P 2
2 1 1 2 2 1 1 2
Now consider the term (see equation 4.2.11)

Q ~Q = 8(z~z'+Z-2+2'+2) A3.10
1 2 1 2

§(z'+22)
also

Q +Q = 6(z-2'+Z+z2-2'-2)
1 2 1 2

=28 (z-y") A3.11
Consider the term (see eguations 4.2.17 and 4,2.19)
z' (z=2") z! z' (z=2"7) z!
2 2 1 1 1 2
CZPI“CIP2 = —“~—~———Wkicosai+5~—)— ————————(kicosui+65—)

Z Z Z
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k.cosa. Sz'z'f
i i 12

= (z2' =2 %zz'+2'2%) + (z=2z'=z+2")
e 2 2 1 1 2 1

z z?

A3.12
= k;z'cosa; - 2k, (v'z'/z)cosa; ~(8z'/z2) (y'2-2"%4)

also

z;(z-z;) z; z;(z—zl) z;
C2P1+C1P2= -——;——-— (kicosai+6; Y + (kicosai+62—)

Z

z
1 2

k.cosa, gz
1 1 7 12 1 12
(z2' =z 22 -2 +
2 2 11

(z=z'+4+z-2')
2 1

z z?

y'2+z'2/4 z=y' z'2
=2k;Y'cosa, - 2k;————— cosa, +28 (y'%-—)A3.13
z z? 4

Finally
—_ ' \ {
PIPZ— [kicosoci + S (y z'/2)/z][kicosoci +8 (y'+2'/2) /2]

= (k;cosa; + §Y'/z)2% - (8z'/2z)?2 ‘A3.14
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APPENDIX A4

LOCATION OF THE POLE OF THE INTEGRAND OF EQUATION 4.2.33a

The pole of the integrand is at

£ = JR(a%/p +8)/2 Ad,1
where § = kscosocs - kicosoci

p = kjcosa, (1-2vy'/z) - S(y'/z)?

g = kicosoci + 6v'/z

The path of integration is along the line
£ =3 28/2
Therefore A = g?/p + § will be compared to § to see if it
lies between § and the origin. If it does not the new path
of integration can be used.
First expand A to get its dependence on the different
parameters.

2
(kicosai +8v'/z)
+ &

A= kEcosai(l-Zy'/z) - 8(y'/2)?

k2cos?a, + 8k.c .
jcos’a, jcosa,

kicosai(l—ZY'/z)-G(y!/z)2

k.k coso. cos
i™s i QS

-y ¥ 2 7 2
kicosai(l Y'/z) kscosas(y /z)

Define k = kscosocs/kicosoci and € = y'/z. Thus

k/€?
A = (1_8)2/82_'( kiCOSOLi A452

§ can be written as

§ = (k=1) kicosai 24,3
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Now if § is positive and N is greater than § or less
than zero the change of path is possible. From equation
A4.2, A is less than zero if

kK > (1-e)2/e?
Since § is positive k>1, therefore if e>.5 the above in-
equality is always satisfied. Since g? is always positive,
A will be greater than § if p is positive. p is essentially
the denominator of equation A4.2 and is positive if

k< (l-g) 2/€?
Therefore if § is positive the change of path is always
possible, since for ¢ positive

k< (l-g)?/e? A>S ad.4a

k> (l-g)?/e? A<0 Ad4.4b

For § negative, A must be less than § or greater than

zero., M is greater than zero if
k< (l-g) 2/e?
A is less than § if p is negative. p is negative if
k> (l=g)?/e?
Therefore if § is negative the change of path is always
possible again, since for § negative
k< (l-g)?/e? A>0 Ad.5a
k> (l-g)?/e? A<S A4.5b

The above discussion shows that A never lies between

§ and the origin and therefore the path of integration can

always be deformed as desired.
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APPENDIX A 5
COMPUTER PROGRAMS

Some of the computer programs used in developing this
report are presented here.

The first program, titled Refractive Index Parameters
0-90, computes the value of p, the refractive index n and the
Gaussian curvature C at a given value of 6 for both modes.,
The input card(s) contains X, Y, frequency (optional) and
the increment in 8., The output cards contain 6, p, n, and C
first for the ordinary mode then for the extraordinary mode.
p always hdas a value from 0° to 90° and 6 is adjusted accord-
ingly. These cards are then used to do the actual computa-
tion work.

The next program TALOK is a subroutine which uses the
values from the previous program. For a given value of p it
scans the table generated previously to determine the values
of 6, n, and C which correspond to it. RHOD is the input
value of p. THATA, N and C are the output values of 6, n,
and C. They are in a 2 x 3 array. The first index refers
to the mode (1 = ordinary, 2 = extraordinary), the second to
the stationary points for that mode. KS gives the number of
values for each mode. 1In this program p can have any wvalue.

The last program CARFLD is a subroutine to compute the
characteristic fields. It uses the results of the previous

subroutine. The input values are X, Y, 6, vy, the azimuthal
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angle between the ray vector and Eo’ n, and KS above, The
output is A the characteristic vectors and B the magnitude
of A. A is a 2 x 3 x 3 matrix. The first index is for the
mode, the second is for the stationary point and the third
is the components of the vector in the coordinate system of

figure Al.2,



100

101

102

103

20

21
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REFRACTIVE INDEX PARAMETERS 0- 90

IMPLICIT REAL(N)

DIMENSTION T(2)4TP(2),TPP(2)sNN(2),NMPP(2),AL(2),ALD(2),RHU(2),
1THAA(2)

CUMMON THATA(Z?gl)1RHUU(2991)1N(2,91)7G(2991)9MM7X7Y
RU=57,29578

HFPI=1,570796
READ(5s100,ENU=99) X4Y,FREQ,DM
FORMAT(4(F10.5))

PUNCH 100¢XsYsFREQ,DM

PRINT 1011X9Y9FREQ
FURMAT('1'95X9'X='1F10¢515X9'Y=',F10o595X7'FREQz',F7521'MHZ')
PRINT 102

FORMAT (70! 328X PORDINARY Y 342X s *EXTRAURDINARY V)
PRINT 103

FORMAT (Y 9 ,2( 8 THETAY 36Xy PRHO" 38X PT 139Xy INY 38X, FGAYU CURVILAX))
DEL=DM*0.01745329

THA==-DEL

MM=(90.,0/DM})+1

DO 2 J=1,MM

THA=THA+DEL

ST=Y®SIN(THA)

CT=Y*COS{THA)

X0=1.0-X

A=ST#xST/(2.0%XU)
SQO=SORT(A*A+CT*CT)

B=ST=CT/X)

C=(A-X0)/S0

D=(CT#*CT-ST*ST) /XU
E=Cx*D+B*B*(1,0-C*C) /SO
T{1)=A-S0

T(2)=A+S0

TP{1)=B*(1.0-C)
TP(2)=B%(1.0+C)

TPP(1)=D-E

TPP(2)=D+E

DO 1 I=1,2

TT=1.0-T(1)

NN(I)=1.0- (X/TT)

IF (NN(I)) 645647

RHO(I)=-1.0

RHOD(Isd)=-1.0

THAA(T)=0.0 ®
THATA{TI+J)=0s0

N{T,J)=0.0

G(I?J)=Oeo

GO TO 1

IF (NN(I)=100.0) 21,20,20
RHO(1)=-1.0

RHOD(I5J)=-1.0

THAA(I)=0,0

THATA(I,J)=0.0

N(TyJ)=-1,0

G{IsJ)=-1.0

GO TD 1

N(IsJ)=SORT(NN{(T))
T1=2,0+(X/(2.0%(TT=X)))
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T2=T1*TP(I)}*TP(I)/TT
T3==X/{(2.0%N(T14J)*TT*TT)
NPP(I)=T3x(TPP(1)+T2)
ALCTI)=ATAN(X*TP{I)/(2.0%TT*(TT=X)))
RHO(I)=AL(I)+THA

IF(ST) 3,4,3

4 F=1e0—(NPP(I)/N(I,J))
GO TO 10
3 F=SIN(RHO(I)})*COS(AL(I)}/SIN(THA)

10 G{IsJ)=F*(LeO+SIN(AL{T) ) *%2—-(NPP(I)*{COSCAL(TI))*%2))}/N(I,Jd))/NN(T)
IF (RHO(I)«LTe0.0) RHO(I)=40%HFPI+RHO(T)

IF (RHO(I)- HFPT) 13,13,11
11 IF (RHO(I)=2.0%HFPI) 1l4:14,12
12 IF (RHO(I)=3,0%HFPI) 15,15,16
13 M=1

RDEL=0.0

GO TO 17
14 M==-1

RDEL=2.0%HFPI
RHO(TI)=RLDEL-RHO( 1)
GO TO 17
15 M=1
RDEL=2,0%HFPI
RHO{TI)Y=RHO(1)-RDEL
GO TO 17
16 =~1
RDEL=4.0%HFPI
RHO(I)=RDEL-RHO(1)
17 THAA(T)=RDEL+M*THA
IF (THAA(I)«LT.0.0) THAA(I)=4.,0%HFPI+THAA(I)
THATA(TI,J)=THAA(TI)=*RD
RHOD(I4J)=RHO(I)*RD
1 CONTINUE
90 PRINT 104, (THATA(I+J)»RHOD(I 3J)yT(I)sN(I,J),G(I4d)5I=1,2)
104 FORMAT (10! 42(2(F6e294X)42(F7e453X)9F10.554X))
PUNCH 105, (THAA(TI) 4RHO(I) yN(I5J),G(I4J),1I=1,2)
105 FORMAT(3F7+:49F10.533X33F7:45F10.5)

2 CONTINUE
GO TO 5
99 CALL EXIT

END
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SUBROUTINE TALOK(RHUOD,THATAsN;C3KS} 144

IMPLICIT R

EAL (N)

COMMON/IN/THA({2,181) +RH(2,181),R1(2,181)5CV(2,181),MM

THATA(24:3)
796

IF (RHOD-HFPI) 51+51452

FPI
R*RHUD
«0.0) RHU==RHO

})) 10,111,111
214,13

IF (RHO=RH(I,K)) 142,3

DIMENSION
HFPI=1.570
MR=1
RDEL=0,0
GO TO 53
MR=-1
RDEL=2,0%H
RHO=RDEL+M
IF (RHOLLT
DO &4 I=1,2
KS(I)=0
15=0

K=1

IF (RH{I,K
IF(K-MM)13
K=K+1

GO TO 12
KK({I)=-1
GO TO 4
0(1)=-1.0
KK(TI)=K+1
GO TO 4
0(I)=1.0
KK(I)=K+1
GO TO 4
KS(I)=1
1S=1
D(I)=-1.0
KK({I)=K+1
THATA(ILIS

)=THA(I,K}

N(2;3)5C(25,3),0(2),KS(2),KK(2)

THATA(1,1S)=RDEL+MR*THATA(I,,1IS)

IF (THATA(
N(I,IS)=RI
C(I,1IS)=CvV
CONT INUE
DO 99 =1,
K2=KK{1)
IF(K2) 99,
DO 8 J=K2Z,
IS=KS(I)
IF (RH{TI,J
A=RHO-RH(1I
IF (A*0(1)
IS=1S+1
KS{I)=KS (I
0(1)=~-0(1)

I,IS).LT.0.0)
(I.K)
(1+K)

2

99,16
MM

)) 8515415
v J)

y+1

THATA(IIS)=THA(I,J)

N({I,IS)=RI

(I,J)

C(IsIS}=CVI(Isd)

GO 7O 7
IS=1S+1
KS{I)=KS{I
o{I1)==0t1)

y+1

THATA(IIS)=4,0%HFPI+THATA(I,LIS)

FAC=(RHO-RH{IsJ=1))/(RH(I4J)-RH(I,J-1))

FACl=1.0-F

AC

THATA(TIsIS)=FACL1*THA(I,J=1)+FAC*THA(I,J)
N(I,IS)=FACI*RI(I,J~1)+FAC*RI(IsJ)
CIsIS)=FACL*CV(I,J~1)+FAC*CV(I,J)
THATA(TI s IS)=RDEL+MR*THATA(I,IS)

IF (THATA(
IF {1S-3)
CONTINUE
CONTINUE
RETURN

END

I,15).L7.0.0)
899,99

THATA(I¢IS)=4,0%HFPI+THATA(I,1IS)
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SUBROUTINE CARFLD(XsYs THATA;GAMASN,K;A,B)
COMPLEX A(2:34+3)4R50

REAL N{(2,3)

DIMENSION THATA({2,3)+48(253)4S(2)4K{(2)
S{1)=-1.0

S(2)=1.0

GAMS=SIN(GAMA)

GAMC=COS (GAMA)

DU 6 ITM=1,2

ITMS=K(IM)

IF (IMS) 6+657

D0 5 IS=1,1IMS

THS=SIN{THATA(IMsIS))

THC=COS(THATA(IM,IS))

YS=Y*THS

X(=1.0-X

Z1=(YS*THS)/ (2.0%X1))

IF (1000.,0%THC*THC LTLZ1x%Z21) GU TO 2
R=CMPLX{0o04(Z1+S{IM)*SORT(Z1%Z1+THC*THC))/THC)
N=CMPLX(0s0sY*THSH{1,0-N(IMsI1S)%%2)/(1.0-X))
C=1.0/SORT{1.0+CABS(R)*3x2)
A(TMyISy1)=C(R*(Q*THS*GAMC~GAMS ) =THC=xGAMC)
A(IMyISs2)=CR{R*(QRTHS*GAMS+GAMC J=THC*GAMS)
A{IMeISy3)=Cx(R2Q*THC+THS)
BIIMyIS)=1aD+((CABS(R)}*CABS (Q))%*3k2)%xC*C

GO TO 5

GO TU (344),1IM
A({IMyISe1)=CMPLX(-THC*GAMC 40.0)
A(IMeIS2)=CMPLX(~THC*GAMS,04,0)
A{TMyISs3)=CMPLX(THS,0.0)

B{IM,1S)=1.0

GO TO 5

D=(X*YS)/(XU-YS*YS)

E=X0*THC/YS

F==D#*THS=-E*THC/THS
A(IMyISs1)=CMPLX(F*GAMC y—-GAMS)
A(IMyIS42)=CMPLX(F*GAMS,,GAMC)
A(IMsIS¢3)=CMPLX(-D*THC+E40.0)

BlIMyIS)=1e0+{({2.0%Z1%D)*%2)/(THC*THC+4,0%Z1%71))

CONTINUE
CONTINUE
RETURN
END
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